
A Practical and Precise Inference and Specializer
for Array Bound Checks Elimination

Corneliu Popeea
Department of Computer Science
National University of Singapore

corneliu@comp.nus.edu.sg

Dana N. Xu
Computer Laboratory

University of Cambridge
nx200@cam.ac.uk

Wei-Ngan Chin
Department of Computer Science
National University of Singapore

chinwn@comp.nus.edu.sg

Abstract
Arrays are intensively used in many software programs, including
those in the popular graphics and game programming domains. Al-
though the problem of eliminating redundant array bound checks
has been studied for a long time, there are few works that attempt to
be both aggressively precise and practical. We propose an inference
mechanism that achieves both aims by combining a forward rela-
tional analysis with a backward precondition derivation. Our infer-
ence algorithm works for a core imperative language with assign-
ments, and analyses each method once through a summary-based
approach. Our inference ispreciseas it is both path and context sen-
sitive. Through a novel technique that can strengthen preconditions,
we can selectively reduce the sizes of formulae to support aprac-
tical inference algorithm. Moreover, we subject each inferred pro-
gram to a flexivariant specialization that can achieve good tradeoff
between elimination of array checks and code explosion concerns.
We have proven the soundness of our approach and have also im-
plemented a prototype inference and specialization system. Initial
experiments suggest that such a desired system is viable.

1. Introduction

Array bound check optimization has been extensively investi-
gated over the last three decades [40, 11, 19], with renewed inter-
ests as recently as [3, 45, 14, 41, 30]. While the successful elimina-
tion of bound checks can bring about measurable efficiency gain,
the importance of check optimization goes beyond this direct gain.
In safety-oriented languages, such as Java, all bound violation must
be faithfully reported under precise exception handling mechanism.
Thus, check optimization is even more important for run-time effi-
ciency under such constraints. For example, the code motion tech-
nique is severely hindered by potential array bound violations.

Most array optimization techniques (e.g.[40, 11, 43]) focus on
the elimination of totally redundant checks. To achieve this, whole
program analysis is carried out to propagate analysis information
(e.g.availability) to each program point. Even for techniques that
handle partially redundant checks, such as partial redundancy elim-
ination (PRE)[4], the focus has been on either moving these checks
or restructuring the control flows, but without exploiting path-

[Copyright notice will appear here once ’preprint’ option is removed.]

sensitivity or interprocedural relational analysis. These features are
important for supporting precise analyses.

In this paper, we propose a practical approach towards array
checks optimization that is both precise and efficient. Our approach
is based on the derivation of a suitable precondition for each array
check across the method boundary, followed by program special-
ization to eliminate array checks found to be redundant. We for-
malise our technique as a type inference system that is able to pro-
cess each method independently, and yet exploits the different con-
texts of its multiple callers. Successful elimination of array checks
depends on how accurately we are able to infer the states of the
program variables. To achieve this, we employ a form of depen-
dent type [23, 7] that can capture symbolic program states using
a relational analysis. For practical reasons, we currently make use
of an existing Presburger arithmetic solver [35] that is quite effi-
cient. Nevertheless, our proposal allows this solver to be replaced
by a more appropriate one, if desired. The key contributions of this
paper include:

• Forward with Backward Combination : We propose a novel
combination of forward plus backward analysis that can be
practical and precise. This combination performs the more ex-
pensive forward fix-point analysis only once per method, but
proceeds to derive individual safety precondition for each check
across procedural boundary. We provide thefirst formalization
and implementationof this combination technique for an im-
perative language. (Sec 2, 4 and 5)

• Smaller Preconditions :To obtain a practical analysis, we de-
vise a new technique to makeformulae smallerby suitable
strengthening of preconditions (Sec 6). This approach trades
(some) precision for speed and has been vindicated by exper-
iments with our prototype inference system.

• Integration with Specializer: We adopt asummary-based ap-
proach that gathers preconditions, postcondition and unsafe
checks for each method. While summary-based techniques have
already been proposed for a number of program analyses [5, 9,
44], their integration with program specializer is hardly investi-
gated. We show how aflexivariantspecializer could be used to
insert runtime test for each array check that has been classified
as unsafe (Sec 7).

• Indirection Arrays : Our approach can analyse thebounds
of elementsinside an array. This is important for eliminating
array checks for a class of programs where indexes are kept
inside indirection arrays (Sec 8). Past techniques on array bound
checks elimination have largely ignored this aspect.

• Prototype : To confirm the viability of our approach, we have
built a prototype inference and specializer system (Sec 9).

1 2007/12/2

2. Overview
A key feature of our approach is the three-way classification of
checks. Given a method definition with a set of parametersV and a
set of checksC, our approach will classify each check (c ∈ C) that
occurs at a location with a symbolic program states, as follows:

• c is safe if it is redundant under the program states at the
location of this check. This holds if the following is valid:

(s ⇒ c)

• c is partially-safe if it may become redundant under an extra
condition. This holds if there exists a satisfiable precondition
pre (expressed in terms of variables from onlyV) such that:

(pre ∧ s ⇒ c) (1)

The precondition can be derived usingpre = (∀L · ¬s∨c),
whereL is the set of local variables, denoted byvars(s, c)− V .
The functionvars returns the free variables used ins andc.

• c is unsafe, if false is the only precondition that can be found
to satisfy (1). In this case, the analysis will (conservatively)
conclude that the checkc may fail at runtime.

Partially-safe checks are special in that they can be propagated
across methods from callees to callers. This mechanism can fur-
ther exploit the program states at callers’ sites for the elimination
of checks. While the above classification is general and may be ap-
plicable to any kind of checks, in this paper we shall be focusing
exclusively on array-related checks.

Let us highlight the above check classification using thefoo

example at the top of Figure 1. In this example,randInt returns
a random integer, whileabs converts each number into its posi-
tive counterpart. The set of parametersV at method boundary is
{a, j, n} wherea is an array with indices from0 to len(a)−1. The
foo method contains two array accesses at locations`1 and`2. The
symbolic program states (sps) at these sites may be affected by
the type invariants1, conditionals, imperative updates and by prior
calls. Computing the states for the method entry`0 and the loca-
tions`1 and`2, we get:

sps(`0) = len(a)>0
sps(`1) = sps(`0) ∧ i=j+1 ∧ (0<i<=n)
sps(`2) = sps(`0) ∧ i=j+1 ∧ m>=0

Based on the earlier classification of checks, we can establish that
the low-bound checks (at`1 and`2) are safe, since:

sps(`1)⇒(i>=0) and sps(`2)⇒(m>=0)

For the high-bound checks (denoted by`1.H and `2.H), we derive
(the weakest) preconditions through universal quantification of the
local variables, as follows:

pre(`1.H) = ∀i, m· (¬sps(`1) ∨ i<len(a))
= ∀i, m· (¬(len(a)>0 ∧ i=j+1 ∧ 0<i<=n)∨i<len(a))
= len(a)<=0 ∨ (j<=len(a)-2 ∧ 1<=len(a))
∨ (1<=len(a)<=j+1 ∧ n<=j)

pre(`2.H) = ∀i, m· (¬sps(`2) ∨ m<len(a))
= ∀i, m·(¬(len(a)>0 ∧ i=j+1 ∧ m>=0) ∨ m<len(a))
= len(a)<=0

These derived preconditions may be the weakest, but they do not
take into account the type invariant and thus are larger than needed.
The type invariantlen(a) > 0 can be used to simplifypre(`2.H)
to false andpre(`1.H) to (j<=len(a)-2 ∨ n<=j∧j+1>=len(a)).
The last formula contains a disjunct(j<=len(a)-2) for satisfying
the check, and a second disjunct(n<=j∧j+1>=len(a)) for avoiding

1 An example of a type invariant is that the size of an arraya, denoted by
len(a), is positive (a design decision we took for our language).

the check (when the conditional test is unsatisfiable). In general,
the simplification may drop disjuncts that violate the type invariant
(len(a)<=0) or remove conditions already present in the type in-
variant(len(a)>0). We perform each simplification of a formula
φ1 under type invariantφ2 by the operation(gistφ1 givenφ2). This
gist operation yields a simplified termφ3 such thatφ3∧φ2 ≡ φ1∧φ2

and was introduced in [36].
While a goal of our analysis is to obtain weaker preconditions

for precision, this might impact the scalability of our analysis. To
obtain smaller (but stronger) preconditions, we apply a similar sim-
plification based on thegist operation, but more aggressive. For ex-
ample, simplifyingpre(`1.H) with respect to the program state of
the check∃ i · sps(`1) yields a smaller precondition(j<=len(a)-2)
without the disjunct that allows avoiding the check. Our proposal
trades off precision for performance and is crucial for overcoming
the intractability of solving large Presburger arithmetic formulae.

Float foo(Float[] a, Int j, Int n)
`0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(`1:a[i]) else ();
Int m=abs(randInt());
v+(`2:a[m]) }

wwÄ Inference

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j ∧ j+1≥s) ;
{`1.H : (j≤s−2) ∨ (n≤j ∧ j+1≥s)}; {`2.H} {· · · }

wwÄ Specialization

Float foo(Float[Ints] a, Intj j, Intn n)
where (j≤s−2) ∨ (n≤j∧j+1≥s); (j≤s−2) ∨ (n≤j∧j+1≥s)
`0:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=(`1:a[i])else ();
Int m=abs(randInt());
v+(if (m<len(a)) then `2:a[m] else error) }

Figure 1. Inference and Specialization : An Example

One feature of our optimization is its formulation in two stages:
type inference followed by specialization. The type inference stage
processes methods in reverse topological order of the call graph. It
computes post-states at each program point, classifies checks and
propagates preconditions as new checks at each method boundary.
It also marks all unsafe checks. These information are collected for
each method declaration: a postcondition∆, a set of preconditions
Φ, a set of unsafe checksΥ, and annotated typesτ0, .., τk.

τ0 m (τ1 v1, . . . , τk vk) where ∆; Φ; Υ {body}

For example, after type inference on thefoo method, we would ob-
tain the method displayed in the middle of the Figure 1, where the
unchanged method body is replaced by{. . .}. During the actual
inference, we use size variables instead of program variables. For
example, size variabless, j andn denotelen(a), j andn respec-
tively.

The inference result is then used by the specialization stage to
insert runtime tests to guard unsafe checks and to derivetarget
programs that are well-typed. Well-typed specialised methods are
decorated with a postcondition∆ and a preconditionφpre :

τ0 m (τ1 v1, . . . , τk vk) where ∆; φpre {body}

The preconditionφpre is a conjunction of checks fromΦ that
are guaranteed safe at each call site. For example, ifpre(`1.H)

2 2007/12/2

P ::= meth∗

meth ::= t mn (([ref] t v)∗) {e}
e ::= c | v | if v then e1 else e2 | v = e

| t v=e1 ; e2 |mn(v∗)
t ::= t | t[Int, . . . , Int]
t ::= Void | Int | Bool | Float

Figure 2. SourceIMP language

is found to be safe when analyzing the call sites of methodfoo,
we can generate the specialised (and well-typed) method at the
bottom of Figure 1. Note that∆ ≡ φpre holds for this particular
example, but in general the two formulae may be different. This is
so as postcondition is computed using over-approximation, while
precondition is computed using under-approximation. Moreover,
postcondition may capture its method’s result(s), but not so for
precondition.

Well-typed programs are safe in that no array bound errors are
ever encountered by any array access during program execution.
This safety property is guaranteed by either the program context
(for array checks̀1.L and`2.L), or the precondition of each method
(for array check̀ 1.H) or the inserted runtime test (for`2.H). In the
rest of this paper, we shall formalise a type inference system to
derive well-typed programs for a core imperative language.

3. An Imperative Language
To formalise our type inference we first introduce a source language
IMP (see Figure 2), where types, denoted byt andt, do not have
annotations.IMP has support for assignments, conditionals, local
declarations, method calls, and multidimensional arrays. Typical
language constructs, such as multi-declaration block, sequence,
calls with complex arguments can be automatically translated to
constructs inIMP. In addition, loops can be viewed as syntactic
abbreviations for tail-recursive methods, and are supported by our
analysis with the help of pass-by-reference parameters.

3.1 Target Language

The target of our inference system is a corresponding imperative
language with dependent types where types may be annotated with
size variables. For example, a boolean value can be denoted by
Boolb where b = 0 representsfalse and b = 1 representstrue;
an integer value can be denoted byIntn with n to denote its
integer value, whileFloat[Ints] can denote an array of floats withs
elements. Input-output relation between size variables from method
parameters and result is captured after thewhere keyword:

Intr randInt() where true; . . .
Intr abs(Inta v)

where (a<0∧r=−a ∨ a≥0∧r=a)∧(a′=a); . . .
Intr add(Inta x, Intb y)

where (r=a+b) ∧ noX{a, b}; . . .
Boolr lessThan(Inta x, Intb y)

where (a<b∧r=1 ∨ a≥b∧r=0)∧noX{a, b}; . . .
Note thattrue for randInt signifies thatr is unbounded. Also,
non-trivial size relations can be supported through disjunctive
formulae. Theprime notation is used to denote the state of size
variables at the end of the method. Parameter values that are
unchanged across method calls are captured using the notation
noX{a, b}≡(a′=a∧b′=b) as a shorthand for “no change in state”.
This no-change in state occurs mostly for parameters that are
passed by value. Pass-by-reference parameters are also supported
in our language using theref keyword.

P ::= meth∗

meth ::= τ mn (([ref] τ v)∗) where ∆;Φ;Υ {e}
prim ::= τ mn ((τ v)∗) where ∆;Φ; C

e ::= · · · | ` : mn (v∗)
τ, τ̂ ::= τ | τ [Ints1 , . . . , Intsk]

τ ∈ PrimAnnType

::= Void | Ints | Bools | Float
Φ ::= { (l+ : φ)∗ } (Labelled Preconditions)
Υ ::= { (l+)∗ } (Unsafe Checks)
C ::= { (l+ : e)∗ } (Labelled Runtime Checks)
` ∈ Label

`+ ::= ` | `1. · · · .`n (Label Sequences)
φ, ∆ ::= a1=a2 | a1≤a2 | φ1∧φ2 | φ1∨φ2 | q〈s∗〉

a ::= c | s | s′ | c∗a | a1+a2

wheres denotes a size variable
Q ::= {(q〈s∗〉 = φ)∗}

Figure 3. InferredIMPI Language

Figure 3 summarises a language with dependent type, called
IMPI , which is designed to be the target of our inference. Each
method declaration captures three information: an input-output re-
lation (postcondition)∆, a setΦ that contains a precondition for
each partially-safe check, and a set of label sequencesΥ, each se-
quence representing the location of an unsafe check. The labels
from Φ and Υ identify call sites from the body of the current
method. This is enabled in our language since every method call
is uniquely labelled. The suffix notations∗ denotes a list of zero or
more distinct syntactic terms separated by appropriate separators,
while s+ represents a list of one or more distinct syntactic terms.

For a non-recursive methodmn, the triple (∆, Φ, Υ) can be de-
rived via inference of the method body (since the triple for each
method called inmn are already inferred.) To support recursive
methods, we make use ofconstraint abstractions(adopted from
[20]). For each mutual-recursive method, we first derive a (recur-
sive) constraint abstractionQ of the formq〈n∗〉 =φ. These abstrac-
tions are used by fix-point computation to provide a sound and pre-
cise analysis for recursive methods. An adaptation of the fix-point
approximation from [11] is detailed via examples in Section 5. Be-
sides constraint abstractions, our language of constraints contains
conjunctions and disjunctions of linear (in)equalities. We make use
of a Presburger solver [35] (with support for universal and existen-
tial quantifications) to eliminate local variables or simplify formu-
lae.

Primitive methods (denoted byprim in Figure 3) lack a method
body and are instead annotated with a postcondition and a set of
preconditions to support type inference. A primitive is also anno-
tated with a set of runtime testsC for use by the specializer : if some
precondition is not satisfied at a primitive call site, its correspond-
ing runtime test is to be inserted. Array operations are implemented
as calls to primitive methods. For example, 1-dimensional array op-
erations with element typeτ are shown below:

3 2007/12/2

τ [Intr] newArr(Ints s, τ v)

where (0<s ∧ r=s ∧ s′=s); {S: s> 0}; {S: s>0}
Intr len(τ [Ints] a)

where (r=s ∧ s′=s); {}; {}
τ sub(τ [Ints] a, Inti i)

where (0≤i<s ∧ noX{i, s}); {L: 0≤i, H: i<s};
{L: 0≤i, H: i<len(a)}

Void assign(τ [Ints] a, Inti i, τ v)

where (0≤i<s ∧ noX{i, s}); {L: 0≤i, H: i<s};
{L: 0≤i, H: i<len(a)}

The primitivenewArr returns a new array with all elements initial-
ized to the valuev, len returns the length of the array,sub returns
an array element from the specified indexi, while assign updates
the specified array element with the valuev. For example, an array
accessa[i] is (automatically) converted tosub(a, i), while an array
updatea[i] = v is converted to the primitive callassign(a, i, v).

4. Type Inference Rules
Our inference system analyses and propagates state information so
as to determine if an array check issafeand if apreconditionis to
be propagated to themethod boundary. The type judgment for the
entire program isPm `I P ; PI . It derives a programPI ∈ IMPI

from a programP ∈ IMP and a set of primitive declarationsPm.
The type judgement for expressions is specified as follows:

V ; Γ; ∆ ` e ; e1 :: τ, ∆1, Φ, Υ

HereV is a set of size variables (calledboundary variables) avail-
able at the boundary of the method in which the expressione re-
sides.Γ is a type environment mapping program variables to their
annotated types. The above judgement states thate will be trans-
formed intoe1 during the inference: the target expressione1 will
contain types annotated with fresh size-variables and labels that
uniquely identify method calls. Bothe ande1 have the same un-
derlying type. Furthermore, successful evaluation ofe (ande1) re-
quires the validity of preconditionsΦ, and the inclusion of the run-
time testsΥ. Successful evaluation ofe also changes the program
state from∆ to ∆1.

For convenience, our inference rules ensure that the size vari-
ables occurring in the annotated typeτ are unique;ie., FSV (τ)∩
FSV (Γ) = ∅ where FSV returns the set of free size variables
found. Some of the interesting inference rules are specified in
Figure 4. In these rules, we uses = fresh() and ` = fresh() to
generate a new size variable and a new label, respectively. For
annotated types,̂τ = fresh(t) (or τ̂ = fresh(τ)) returns a new
type τ̂ with the same underlying type ast (or τ), but anno-
tated with fresh size variables. The functionequate(τ1, τ2) gen-
erates equality constraints for the corresponding size variables
of its two arguments, assuming both arguments share the same
underlying type. For example, we haveequate(Intn, Intm′) =
(n = m′). The functionrename(τ1, τ2) returns a mapping instead,
e.g.rename(Intn, Intm′) = (n 7→ m′). A conditional constraint is
expressed asζ1 ¢ b ¤ ζ2 =df if b thenζ1 elseζ2. For the rest of this
section, we highlight the important aspects of our inference system
via examples.

4.1 Inferring Imperative Update

Consider an assignment expressionv = v + u, with a pre-state for-
mula ∆ = (m′=2+n′∧n′=5) and Γ = {u :: Intm, v :: Intn, . . .}.
This example shows how theprimenotation is used to capture the
latest values of size variables at each symbolic state [22]. It also

shows how updates are effected by a sequential composition op-
erator,◦X , whereX denotes a set of size variables that are being
updated.

The following depicts the inference step for assignment:

Γ(v) = Intn Γ(u) = Intm

V ; Γ; ∆ ` v + u ; v + u :: Intr, ∆ ∧ r = n′ + m′, ∅, ∅
∆2 = assign(∆ ∧ r = n′ + m′, Intn, Intr)

V ; Γ;∆ ` v = v + u ; v = v + u :: void, ∆2, ∅, ∅

The functionassign performs the necessary sequential composi-
tion:

assign(∆, τ, τ1) =def let X = FSV (τ) ; Y = FSV (τ1)

in ∃Y.(∆ ◦X equate(prime(τ), τ1))

For our example, the correct post-state of the assignment can be
computed as follows:

∆2 = ∃r · ((∆ ∧ r=n′+m′) ◦{n}(n′=r))
= ∃r · ((m′=2+n′∧n′=5∧r=n′+m′) ◦{n}(n′=r))
= ∃r · (∃n0 ·m′=2+n0∧n0=5∧r=n0+m′∧n′=r)
= (m′=7 ∧ n′=m′+5)

More formally, sequential composition is defined as:

φ1 ◦X φ2 =def ∃R · ρ1(φ1) ∧ ρ2(φ2)
where X = {s1, . . . , sn} are size variables being updated

R = {r1, . . . , rn} are fresh size variables
ρ1 = {s′i 7→ ri}n

i=1 ρ2 = {si 7→ ri}n
i=1

4.2 Path Sensitive Inference

The [If] rule attempts to track the size constraint of condition-
als with path sensitivity. The two conditional branches are distin-
guished by assuming the conditional-test result to be either1 or
0, representing thetrue or the false value, respectively. Given
e = if u then v else 5 andΓ = {v :: Intn, u :: Boolb}, the rule de-
rives ∆3 combining via disjunction the inference results of both
branches. We replace bothr1 andr2 (the resulting sizes from both
branches) by the final resulting sizer.

∆1 = ∆∧(b′=1) ∆2 = ∆∧(b′=0)

V ; Γ;∆1 ` v ; v :: Intr1 , ∆1 ∧ (r1=n′), ∅, ∅
V ; Γ;∆2 ` 5 ; 5 :: Intr2 , ∆2 ∧ (r2=5), ∅, ∅
∆3 = ∆ ∧ ((b′=1 ∧ r=n′) ∨ (b′=0 ∧ r=5))

V ; Γ;∆ ` e ; e :: Intr, ∆3, ∅, ∅

4.3 Precondition for Safety of Check

Precondition derivation is essential for the detection of safe checks
across method boundaries. A check is proved safe when a call con-
text implies the call’s preconditions. Otherwise, the preconditions
associated with a call are replaced by preconditions associated with
its caller. The generated preconditions are expressed in terms of the
boundary variables. The[Call] rule formalizes this process.

As an example, consider inferring a primitive callsub(z, j)
under the type assumptionΓ = {v :: Intv , z :: Float[Intm], j ::
Intj} and the pre-state∆ = (m′=m∧m′=10∧j′=v′+2∧v′=v+1∧
v′>5). Furthermore, let the set of boundary variablesV be{v, m}
and j be a local variable. The two array-bound checks of the
sub primitive, 0≤i and i<s, are transformed into the following
preconditions:

pre1 = (∆ ≈> ρ(0 ≤ i))↓V ≡s true
pre2 = (∆ ≈> ρ(i < s))↓V ≡s (v < 7)

whereρ = {s 7→ m, s′ 7→ m′, i 7→ j, i′ 7→ j′}. The substitutionρ re-
places the size variables associated with the formal parameters of

4 2007/12/2

[Var]

Γ(v) = τ τ1 = fresh(τ)

φ = equate(prime(τ), τ1)

V ; Γ;∆ ` v ; v :: τ1, ∆ ∧ φ, ∅, ∅

[Var−Assign]

V ; Γ;∆ ` e ; e1 :: τ1, ∆1, Φ, Υ

Γ(v) = τ ∆2 = assign(∆1, τ, τ1)

V ; Γ;∆ ` v=e ; v=e1 :: Void, ∆2, Φ, Υ

[If]

Γ(v) = Boolb V ; Γ;∆ ∧ (b′ = 1) ` e1 ; e3 :: τ1, ∆1, Φ1, Υ1

τ = fresh(τ1) V ; Γ;∆ ∧ (b′ = 0) ` e2 ; e4 :: τ2, ∆2, Φ2, Υ2

ρi = rename(τi, τ) ∀i ∈ {1, 2} ∆3 = ρ1∆1 ∨ ρ2∆2 e5 = if v then e3 else e4

V ; Γ;∆ ` if v then e1 else e2 ; e5 :: τ, ∆3, Φ1∪Φ2, Υ1∪Υ2

[Call]

Γ(vi) = τi ∀i ∈ 1..n τ = fresh(τ̂) U =
⋃k

i=1 FSV (τi) ` = fresh()

(τ̂ m(τ̂1 x1, . . . , τ̂n xn) where ∆m; Φm; · · ·) ∈ P ∪ Pm Φm = {(`+1 : φ1), .., (`+k : φk)}
ρ = rename(τ̂ , τ)] Σn

i=1{rename(τ̂i, τi)} prei ≡s (∆ ≈> ρφi)↓V
mkChk(prei, `.`

+
i , Φ̂i, Υi) ∀i ∈ 1..k Φ̂ =

⋃k
i=1 Φ̂i Υ =

⋃k
i=1 Υi

V ; Γ;∆ ` m(v1..n) ; ` : m(v1..n) :: τ, ∆ ◦U ρ(∆m), Φ̂, Υ

[Mtd−Declare]

md = t m(t1 v1, . . . , tk vk) {e} τi = fresh(ti) ∀ i = 1..n τ = fresh(t)

V =
⋃k

i=1 FSV (τi) W = V ∪ FSV (τ) Γ = {v1 : τ1, . . . , vk : τk}
∆init = init(Γ) V ; Γ;∆init ` e ; e1 :: τ, ∆, Φ, Υ Q = {m〈W 〉 = ∆}

`I md ; τ m(τ1 v1, . . . τkvk) where m〈W 〉; Φ;Υ{e1} | Q

[MkChk−1]

pre ≡ true

mkChk(pre, `+, ∅, ∅)

[MkChk−2]

pre ≡ false

mkChk(pre, `+, ∅, {`+})

[MkChk−3]

¬(pre ≡ true ∨ pre ≡ false)

mkChk(pre, `+, {`+ : pre}, ∅)

Figure 4. Type Inference Rules

sub with those from the actual parameters of the call. The new pre-
conditions are obtained by simplifying (≡s) the result of the oper-
ations (≈>) and↓V . The operator≈> formulates the implication of
an array-bound check by the corresponding calling context. It en-
sures that all size variables are expressed in terms of those of the
call arguments, and primed variables are used in the post-state of
the caller:

∆ ≈> φ =def (∆ ⇒ ρ(φ)) where ρ = {s1 7→s′1, . . . , sn 7→s′n};
{s1, . . . , sn} = FSV (φ)

The operator↓V projects a constraint to the boundary variable setV
through quantification of (size variables from) the local variables.
These variables are universally quantified, so that the resulting
precondition is strengthened (weakening via∃ quantifier is unsound
in this case):

φ↓V =def ∀W · φ whereW = FSV (φ)− V.

After its derivation, each precondition is classified by the rela-
tion mkChk(pre, A, B, C) to determine if the corresponding array
bound check can be eliminated safely, be left as runtime check, or
decided at a later stage (a partially-safe check). Here,A is a label
sequence leading to the specific bound-check,B outputs the check
if it is partially-safe, andC outputs the label sequence identifying
the check if it should be left at runtime. For the example above, we
have mkChk(pre1, `.L, ∅, ∅) and mkChk(pre2, `.H, {`.H : pre2}, ∅),
where ` is a new label associated with the callsub(z, j). These
mkChk clauses indicate that the low-bound check is safe, while the
upper-bound check is partially safe.

For recursive methods, we first employ a fixed-point computa-
tion to derive both the method postcondition and a recursive invari-

ant. The invariant captures a size relation to relate the parameters of
an arbitrary-nested recursive call with those of the first call. Once
the postcondition and the invariant are determined, we can compute
the program state at each program point and derive preconditions
similarly to the non-recursive case. Details are given next.

5. Recursion Analysis
Our type inference rules effectively determine both a postcondition
and a set of preconditions for non-recursive methods. For recursive
methods, these rules derive a (recursive) constraint abstraction that
can be analyzed via fix-point analysis. The analysis steps are: (i)
determine a fix-point for the constraint abstraction, and derive the
method postcondition, (ii) determine an invariant for the recursive
calls, and (iii) derive preconditions for checks inside recursion.

5.1 Deriving Postcondition

The postcondition can be derived from a recursive constraint via a
fix-point approximation procedure pioneered in [11] and adapted
for a disjunctive domain in [1, 18, 39, 33]. Let us consider a con-
straint abstraction of the formq〈n∗, r〉 where n∗ denote inputs,
while r denotes its output. For simplicity and without loss of gen-
erality, let us assume we have a constraint abstraction with two re-
cursive invocations of the following form.

q〈n∗, r〉 = φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉]

Note thatφ1[,] is a formula with two holes containing the two
recursive invocations, whileφ0 is the base case. The fix-point of
such an abstraction can be formalised by the following series:

q0〈n∗, r〉 = false
qi+1〈n∗, r〉 = φ0∨φ1[qi〈s∗, r1〉, qi〈t∗, r2〉]

5 2007/12/2

For the above fix-point series to converge, we perform approxima-
tions via two techniques, known ashulling andwidening.

Hulling approximates a set of disjuncts
∨

φi with a conjunct
φ such that(

∨
φi) ⇒ φ. This process can be refined by hulling

selectively a subset of closely-related disjuncts. We use the notion
of affinity to characterize how closely related is a pair of disjuncts
[33]. This selective hulling process is denoted by

∨
φi ≡h φ.

Conjunctive widening takes a formula
∧

φi and drops (by re-
placing withtrue) those constraintsφi that are changed compared
to the previous step. To apply the widening operator to a disjunctive
formula, we first look for pairs of disjuncts (from the current and
the previous step) to widen and then apply the conjunctive widening
on these pairs [33]. Let us denote widening by≡w. We shall apply
each fix-point approximation until we obtain a formulaqp〈n∗, r〉
such thatqp+1〈n∗, r〉 ⇒ qp〈n∗, r〉. This test indicates that a post
fix-point qp〈n∗, r〉 has been reached.

Methods with Postconditions:
Float sumvec(Float[Ints] a,Inti i,Intj j)
where sumvec〈s, i, j〉, . . .

{ if i>j then 0.0 else {Int v= `1:sub(a,i);
v+`2:sumvec(a,i+1,j) } }

Float sum(Float[Ints] a) where sum〈s〉, . . .
{ Int l=`3:len(a); `4:sumvec(a,0,l-1) }

Constraint Abstraction :
sumvec〈s, i, j〉 ≡ (i>j)∨(i≤j ∧ 0≤i<s ∧ sumvec〈s, i+1, j〉)

Figure 5. Sum Vector Program

Consider the simple summation program from Figure 5, where
the constraint abstraction obtained from our inference rules is also
given. To obtain a closed-form postcondition, we apply fix-point
analysis starting withfalse, the least element of the disjunctive
polyhedron domain. Due to the use of widening, such fix-point
approximationalways terminates. For brevity, we display related
constraints like(j−1≤i ∧ 0≤i ∧ i≤j) using the abbreviated form
(j−1, 0≤i≤j).

sumvec0〈s, i, j〉 = false
sumvec1〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧false))

= (i>j)
sumvec2〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1∧i1>j))

= (i>j)∨(0≤i<s ∧ i=j)
sumvec3〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1

∧ (i1>j ∨ (0≤i1<s ∧ i1 = j))))
= (i>j)∨(0≤i<s−1 ∧ j=i+1)∨(0≤i≤s∧i=j)
≡h (i>j)∨(j−1, 0≤i≤j<s)

sumvec4〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1
∧ (i1>j ∨ (0≤i1<s−1 ∧ j=i1+1)∨(0≤i1≤s∧i1=j)))))

≡h (i>j)∨(j−2, 0≤i≤j<s)
≡w (i>j)∨(0≤i≤j<s)

sumvec5〈s, i, j〉 = (i>j)∨(i≤j ∧ 0≤i<s ∧ (∃i1·i1=i+1
∧ (i1>j ∨ (0≤i1≤j<s))))
= (i>j)∨(0≤i≤j<s)

Fix-Point Detected:sumvec5〈s, i, j〉 ⇒ sumvec4〈s, i, j〉
We reach the following fix-point in five iterations:

sumvec〈s, i, j〉 = (i>j)∨(0≤i≤j<s)

5.2 Deriving Recursive Invariant

Within each recursive method, we may have checks that must be
optimized. To deal with this, we compute another constraint, but
this time, for just the input parameters (excluding the results of
method). More specifically, we build a one-step size relation to
relate the parameters of the next recursive calls with those of the
first call. This relation is then analysed via fix-point analysis to

derive a multi-steps relation, known asrecursive invariant. The
latter can relate the parameters of an arbitrary recursive call with
those of the first call.

One-step relation can be directly extracted from each recursive
constraint abstraction. Given the earlier abstraction (of two recur-
sive invocations),q〈n∗, r〉 = φ0∨φ1[q〈s∗, r1〉, q〈t∗, r2〉]. We can ob-
tain a one-step relation, namedI, that attempts to relate the input
n∗ with that of its recursive call,̂n∗, as shown below.

I〈n∗, n̂∗〉 = φ1[
∧

(s = n̂)∗, q〈t∗, r2〉] ∨ φ1[
∧

(t = n̂)∗, q〈s∗, r1〉]

With this relation, we can now apply fix-point analysis to obtain:

I1〈n∗, n̂∗〉 = I〈n∗, n̂∗〉
Ii+1〈n∗, n̂∗〉 = Ii〈n∗, n̂∗〉 ∨ (∃z∗ · Ii〈n∗, z∗〉∧I〈z∗, n̂∗〉)

We derive the following recursive invariant via fix-point analysis:

sumvecI〈s, i, j, ŝ, î, ĵ〉 = (ŝ=s)∧(ĵ=j)∧(0≤i<î≤s, j+1)

The recursive invariant is important for deriving safety precondi-
tions of checks inside recursive methods, as elaborated next.

5.3 Deriving Precondition

Our inference can derive preconditions for checks inside recursion.
Due to recursion, such checks may be encountered multiple times.
We propose to separate out the check of thefirst recursive call
from the checks of therest of the recursive calls. The reason for
this is that recursive invariant that we derive is applicable to all
recursive calls, except the first. Consequently, the program state
for the first check and the program state for the recursive checks
are different. More specifically, consider a checkc labelled as̀ at
program contexts in a recursive methodm with invarianti. Its two
preconditions can be derived as follows:

preFst(`) = ∀L · (s ⇒ c) where L = vars(s, c)− V
preRec(`) = ∀L · (s∧i ⇒ c) where L = vars(s, c, i)− V

For thesumvec example, we would derive two sets of precondi-
tions, namely:

preFst(`1.L) = (j<i)∨(0≤i)
preFst(`1.H) = (j<i)∨(i<s)
preRec(`1.L) = true
preRec(`1.H) = (j<s)∨(s≤j∧i≤−1)∨(s≤j, i)

These preconditions are propagated to the caller of eachsumvec
call. Note that the precondition for (rest of the) recursive checks for
`1.L is totally safe, but the first check of`1.L can be guarded by a
condition (j<i)∨(0≤i). These different scenarios of array checks
can be exploited by program specialization, so as to maximise
the elimination of redundant checks whilst being mindful of the
potential for code explosion. We describe such a specialization
process in Section 7.

6. Deriving Smaller Formulae
An important property of program analysis is efficiency, and this is
particularly so for an inference system based on Presburger arith-
metic. Presburger arithmetic can give highly accurate analysis (with
disjunctions and quantifiers) but has double-exponential complex-
ity, namely22cn

wheren is the size of its formulae. A summary-
based analysis like ours brings about a smaller number of size vari-
ables at each method boundary than a global analysis approach.
With this decrease, the main proviso for efficiency is to ensure that
the pre and postconditions are kept small in size.

A major reason for large formulae is the presence of disjuncts
related to the specification aggregation problem observed in [25].
To counter this effect, a derived postcondition can be weakened

6 2007/12/2

through thehulling of its disjuncts. However, applying a weakening
process is unsound for preconditions! For preconditions, it is only
safe to strengthen and we propose a new technique that improves
the analysis efficiency at a low cost in precision. We perform the
strengthening of the preconditionφpre using thegistoperation from
the Omega library [36].

Given a checkc which occurs at a location with program state
s and local variablesVL, we have earlier derived the weakest
precondition usingpre = (∀VL · ¬s∨c). This derived precondition
is unsuitable due to the negation of a (possibly very large) program
state formulas. To derive smaller preconditions, we may simplify
pre using a valid states1 for which (∃VL · s)⇒s1 holds.

• One suchs1 that can be used is thetype invariantinv at method
entry. Let us refer to this technique of using(gistpre giveninv)
asweak pre-derivation.

• A second technique is to use∃VL · s itself. Let us refer to this
technique using(gistpre given∃VL · s) asstrong pre-derivation.
This technique would strip off all theavoidance conditions
from the derived precondition, which may result in some loss
of precision.

• To recover this loss of precision, we also propose a third tech-
nique, calledselective prederivation, which would first obtain
a variant of∃VL · s that is weakened by removing conditional
tests froms.

For example, consider a symbolic program state from the recur-
sivesumvec method:∃ î · s>0∧î≤j∧(0≤i<î≤s, j+1). After strip-
ping off its conditional test,̂i≤j, we would obtain a weaker state:

∃ î · s>0∧(0≤i<î≤s, j+1)

Simplifying the precondition of(j<s)∨(s≤j∧i≤−1)∨(0≤i∧s≤j, i)
with this program state results in a much smaller precondition,
namely j<s, that is obtained by both selective and strong pred-
erivations. This is in contrast to(j<s)∨(s≤j∧i≤−1)∨(s≤j, i) that
is obtained by weak prederivation.

In our experiments (see Section 9), we tested the three pred-
erivation techniques. When compared to the weak prederivation
technique, we were able to reduce the size of preconditions on
average by 63.4% for selective prederivation and by 81.8% for
strong prederivation. We found the selective prederivation to have a
reasonable compromise between efficiency and precision. Further-
more, we achieved a significant reduction in the inference times
needed by some larger programs which fail to complete in reason-
able (allotted) time, otherwise!

7. Flexivariant Specialization
The objective of specialization is to place run-time tests (for unsafe
checks) at their respective primitive operations with the objective
that array operations become safe,and the array checks are done
minimally. To this end, we specialize the existing method defini-
tions with information about run-time tests.

To understand the effectiveness of various approaches to spe-
cializing method definitions, we examine the following example
program:

void main()
{ · · ·

`5 : p(· · ·);
· · ·
`6 : q(· · ·)}

t2 p(· · ·)
{ · · ·

`3 : q(· · ·);
· · ·
`4 : q(· · ·)}

t1 q(· · ·)
{ · · ·
v1=(`1: sub(a1, i1));
`2: assign(a2, i2, v1)}

Let us assume that the results of inference are as follows:

Pre-Conditions forq
from `1 from `2

`1.L `1.H `2.L `2.H

true φ1 true φ2

Pre-Conditions forp
from `3 from `4

`3.`1.H `3.`2.H `4.`1.H `4.`2.H

true φ3 φ4 false

Pre-Conditions formain
from `5 from `6

`5.`3.`2.H `5.`4.`1.H `6.`1.H `6.`2.H

true true false false

This corresponds to the following inferred method headers with
partially-safe and unsafe checks.

t1 q(· · ·) where · · · {`1.H : φ1, `2.H : φ2}, {}
t2 p(· · ·) where · · · {`3.`2.H : φ3, `4.`1.H : φ4}, {`4.`2.H}
void main() where · · · {}, {`6.`1.H, `6.`2.H}

Thus, there are three unsafe checks that must be residualized at
run-time, namelỳ4.`2.H, `6.`1.H and`6.`2.H. The other checks are
either safe, or partially-safe with the possibility of becoming safe
using the context of the caller. An aggressive approach to elimi-
nating checks ispolyvariant specialization. This aims at creating
multiplespecialized methods for each method definition, such that
each specialized version of a method has a different set of array
checks being eliminated. Its application on our example program
yields the following result:

void main()
{ · · ·
p(· · ·);
· · ·
q 3(· · ·)}

t2 p(· · ·)
where .., φ3∧φ4

{ · · ·
q 1(· · ·);
· · ·
q 2(· · ·)}

t1 q 2(· · ·) where .., φ1

{ · · ·
v1 = sub(a1, i1);
if (i2 < len(a2)) then
assign(a2, i2, v1)

else error }

t1 q 1(· · ·) where .., φ1∧φ2

{ · · ·
v1 = (sub(a1, i1));
assign(a2, i2, v1) }

t1 q 3(· · ·) where .., true
{ · · ·

v1 = (if (i1 < len(a1))
then sub(a1, i1)
else error);

if (i2 < len(a2)) then
assign(a2, i2, v1)

else error }
Note that three versions ofq have been created to handle its three
calls under different calling contexts.

We propose aflexivariant program specialization scheme in
this paper. As special cases, we can either support polyvariant or
monovariant specializations. For polyvariance, we can achieve it by
never attempting to weaken any of the configurations encountered.
For monovariance, we can achieve it by weakening each configu-
ration encountered to its most conservative variant with maximal
unsafe checks. For this example, the monovariant case will weaken
the configurations of bothq 1 andq 2 to q 3. Even thoughq 3 is the
weakest configuration, it still has two low bound checks eliminated.

A key feature of our flexivariant specialization scheme is its
ability to trade-off optimization for a reduction in code size. Fur-
thermore, it is possible to achieve such trade-offs with minimal loss
in performance. For example, if it can be determined thatq 1 con-
figuration occursinfrequently, we may weaken it intoq 2 to save
on code size with little loss in performance.

Flexivariant specialization of a programP into an optimized pro-
gramS is declared as follows:.flex P ⇀ S. Specializing a method
requires information about the set of runtime tests to which calls
in the method body may lead. Thus, a specialized method can be

7 2007/12/2

identified by a triple comprising the original method name, a set
of label sequences associated with the relevant runtime tests, and a
new method name uniquely defined by the first two components of
the triple. We call such a triple aspecialization signature(or signa-
ture in short), and a set containing such signatures aspecialization
cache(or cachein short).

(m, ς, m̂) ∈ SSig = MName× LSet×MName
σ, σY , σN , σ̂N ∈ SCache = P(SSig)

ς ∈ LSet = P(Label+)

The specialization of an expression is defined by:

P, σ, ς .e
flex e ⇀ e1, σN

The specialization cacheσ drives the process, whileς contains the
checks to be residualized. New specialization points created during
specialization are stored inσN . We highlight the most important
specialization rules below.

An array operation is specialized in[Spec−Prim] by calling
the respective primitive method without array checks under the
condition that the combined runtime checks for this operation,e1,
is true.

[Spec−Prim]

τ m(τ1 x1, . . . , τn xn) where∆, Φ,C ∈ Pm

ρ = [x1 7→ v1, . . . , xn 7→ vn]

e1 =
∧{ρ e | `.c ∈ ς ∧ (c : e) ∈ C}

e2 = if e1 then m(v1, . . . , vk) else error

e3 = m(v1, . . . , vk) ¢ (e1 = true) ¤ e2

P, σ, ς .e
flex (` : m(v1, . . . , vk)) ⇀ e3, ∅

Here, a label sequence of the form̀.c occurring in the setς rep-
resents an array check to be residualized. Its code is available at
the corresponding primitive method declaration. Variable substitu-
tion is needed to residualize the code. All codes thus generated are
combined as a conjunct, namede1, which is then wrapped as a run-
time test for the primitive call tom. If the runtime set is empty –
signified bye1 beingtrue – them call will not be wrapped by a
conditional.

Similarly, user-defined methods are specialized with respect to
the set of runtime tests ([Spec−Call1]). Weakening of configura-
tions byW may enlarge this set of runtime tests. Specialization
produces a signature for this specialized method if the latter has
not been recorded in the current cache. Otherwise, it reuses the spe-
cialised method that has been recorded previously, as specified in
[Spec−Call2].

[Spec−Call1]

(τ m(τ1 x1, . . . τkxk) where ∆, Φ, Υ {e}) ∈ P

ς2 = W(m, ς1) ς1 = {`+ | `1.`+ ∈ ς} ∪Υ
(m, ς2,) 6∈ σ ms = genName(m, ς2)
P, σ, ς .e

flex (`1 : m(v1, . . . , vk))

⇀ ms(v1, . . . , vk), {(m, ς1, ms)}
[Spec−Call2]

(τ m(τ1 x1, . . . τkxk) where ∆, Φ, Υ{e}) ∈ P

ς1 = {`+ | `1.`+ ∈ ς} ∪Υ (m,W(m, ς1), ms) ∈ σ
P, σ, ς .e

flex (`1 : m(v1, . . . , vk)) ⇀ ms(v1, . . . , vk), ∅

8. Array Indirections
There is a class of programs which has been largely ignored in past
work on array bound checks elimination. This class of programs
uses indexes that are stored in another array (indirection array).
Array indirections are used intensively for implementing sparse
matrix operations. For such matrices, only nonzero elements are

stored; Additionally, the indices of these elements are kept inside
an indirection array. Lujanet al [27] proposed a solution to handle
indirection arrays via a runtime mechanism. Our system handles
indirection arrays and relies entirely on compile-time analysis.

To support programs with indirection arrays, the bounds of their
elements will have to be captured using an additional size variable
a via a new annotated type for integer arrayInta[Ints]. Precise
tracking will allow us to analyse the indexes retrieved from such
integer arrays. As the array elements are being changed by the
assign primitive, their bounds may also change during program
execution. Such size properties are thereforemutable. To handle
them safely, we require the support of an alias analysis, such as
the one proposed in [21], that could be used to identify may-aliases
amongst the integer arrays.

In addition to alias annotation, the main extra machinery is a set
of enhanced primitive declarations (preconditions and runtime tests
are unchanged, so we replace them for brevity with. . .).

Inta[Intr] newArr(Ints s, Intv v)

where (0<s ∧ r=s ∧ a=v ∧ noX{s, v}); . . .
Intr sub(Inta[Ints] a, Inti i)

where (0≤i<s ∧ r=a ∧ noX{i, s, a}); . . .
Void assign(Inta[Ints] a, Inti i, Intv v)

where (0≤i<s ∧ (a′=v ∨ a′=a) ∧ noX{i, s, v}); . . .

The array elements are updated by thenewArr andassign prim-
itives, and read by thesub primitive. In particular, the formula
(a′=v ∨ a′=a) captures a weak update operation with a new ap-
proximation to the state of elements in the array. Furthermore, we
may even track the relation between array indexes and their ele-
ments by using the annotated typeInt(i,a)[Ints] with a new size
variablei to denote index positions. By using primitives with such
type declarations, we can selectively support increased precision
for our analysis. Note that both the inference and the specializer
work with the above indirection array primitives as well as with the
array primitives without indirection from Section 3.1.

Let us illustrate how array indirections are analyzed via a simple
example that initializes an array with a range of integer values:

Void initArr (Inta[Ints] a, Inti i, Intj j, Intn n)
where initArr〈a, s, i, j, n〉

{ if i>j then () else {a[i]=n; initArr(a,i+1,j,n+1)} }

Using the fix-point analysis described in Sec 5, we can obtain
the following post-condition which captures the initialization of the
array elements:

initArr〈a, s, i, j, n〉 ≡
≡ (i>j ∧ a′=a) ∨ (0≤i≤j<s ∧ (a′=a ∨ n≤a′≤n+j−i))

9. Implementation
We have constructed the proposed modular inference system to-
gether with a program specializer. Our implementation includes a
pre-processing phase to convert a C-like input program toIMP. The
output from our system was validated by a separate checking sys-
tem that we have also built. The entire prototype system was writ-
ten in Haskell and compiled using Glasgow Haskell compiler[32].
For constraint solving in the Presburger arithmetic domain, we used
the Omega library [35]. A web-demo of our system can be found at
http://loris-7.ddns.comp.nus.edu.sg/~popeeaco/imp/.

We evaluated our prototype using small programs with chal-
lenging recursion and two numerical-intensive benchmarks: Sci-
Mark (Fast Fourier Transform, LU decomposition, Successive

Over-Relaxation) [31] and Linpack [13]. Our test platform was a

8 2007/12/2

Benchmark Programs Source Static Checking Inference (secs) Static Checks
(lines) Checks (secs) Weak Selective Strong Eliminated

binary search 31 2 0.17 1.84 1.81 1.79 100%
bubble sort 39 12 0.43 1.55 1.51 1.47 100%

foo 12 4 0.39 0.66 0.67 0.87 50%/75%
hanoi tower 38 16 3.73 11.74 11.53 11.47 100%
merge sort 58 24 7.70 11.21 16.01 13.07 100%

queens 39 8 0.52 2.13 2.11 2.10 100%
quick sort 43 20 0.38 1.92 1.92 1.76 100%
sentinel 26 4 0.05 0.18 0.16 0.15 75%

sparse multiply 46 12 3.27 22.61 17.37 7.09 100%
sumvec 33 2 0.11 0.51 0.48 0.47 100%

FFT 336 62 9.58 * 58.02 28.74 100%
LU Decomp. 191 82 13.10 137.1 93.31 72.91 100%

SOR 84 32 1.15 7.18 4.67 3.8 100%
Linpack 903 166 42.26 * 360.1 162.2 100%

Figure 6. Statistics for Array Bound Checks Elimination

Pentium 2.8 GHz system with 1GBytes main memory, running Red
Hat Linux 9.0.

Our main objective was to show the viability and the precision
of the system. Figure 6 summarises the statistics obtained for each
program that we inferred. To quantify the analysis complexity of
the benchmark programs, we counted the program size (column 2)
and also the number of static checks present in each program (col-
umn 3). The time taken for inference (columns 5-7) includes pars-
ing, preprocessing, modular type inference and specialization. For
comparison, we present the time taken for checking pre-annotated
programs (column 4), composed from parsing and dependent type
checking. The size of the method constraints (preconditions, post-
conditions and recursive invariants) is on average around 15% of
the size of the source program. Thus, our inference eliminates the
effort to annotate methods required of programmers with access to
only a dependent type checker.

Due to the precision of our inference system, we were able to
eliminate 100% of array checks for all the programs we tested,
except forsentinel andfoo (column 8). Thesentinel example
illustrates a pattern where some checks cannot be eliminated by
our method, since it makes use of a sentinel/guard against falling
off one end of the array. Like [45, 43], we were unable to capture
the existential property that is required for check elimination. For
the foo example, strong prederivation and selective prederivation
eliminate 50% and 75%, respectively, of the static checks.

We can compare our experimental results to other analyses
that are based on disjunctive domains similar to ours, but employ
only forward derivation [39, 33]. For the benchmark set used in
our previous work [33], a forward derivation and a fixed-point
analysis with Hausdorff affinity akin to [39] led to 76% check
elimination, while a forward analysis using planar affinity intro-
duced in [33] was able to eliminate 84% of the checks. Compared
to these two previous analyses, our current techniques achieve
100% check elimination. We can attribute this improvement to the
combination of the forward derivation of postconditions with the
backward derivation of preconditions. Another reason for our im-
proved results was the handling of array indirections present in the
sparse multiply andLinpack benchmarks.

In almost all cases, strong prederivation takes less time than se-
lective prederivation, followed by weak prederivation. As an excep-
tion, the increased precision of weak prederivation allows a faster
analysis ofmergesort, since some bound checks are proved redun-
dant at an earlier point than the other two prederivation methods.
On the other hand, for those larger programs we found it crucial
to use either selective or strong prederivation; weak prederivation

does not scale up as inference fails to complete in reasonable time
(cases denoted by * signify over an hour inference time).

To summarize our experiences, we observe that our initial goal
was to build a precise inference system and make it practical by
employing a modular analysis that computes method summaries.
However, the small number of size variables at each method bound-
ary was not enough to ensure the efficiency of our system. The
backward component of our system proved to be expensive mostly
due to two reasons. Firstly, precondition derivation was done via
negation of a (possibly very large) program state formula. Sec-
ondly, array bound checks were specialized by deriving individual
preconditions, one for each check. This was our intention in or-
der to enable aggressive program optimization. Note that proving
program safety does not necessarily require individual precondi-
tion derivation (and, in our setting, can be less expensive). To cope
with these additional difficulties, we employed additional approx-
imations to reduce the size of method summaries: weakening of
postconditions via selective hulling and strengthening of precon-
ditions via gisting. With these techniques, both the inference and
the specializer were integrated into a system that was shown to be
practical and precise enough for our purposes.

10. Soundness of Inference System
The soundness of our type inference is defined with respect to
a type checking system and a specialization process. After type
inference (that includes fixed-point analysis), the inferred program
must bespecializedto include the runtime tests discovered during
inference, before it becomes well-typed. We state the soundness of
our system below and refer the reader to the technical report [34]
for details on the proof.

THEOREM 1 (Soundness).Let P be a program and a type infer-
ence judgement such that(Pm `I P ; PI). Let (.flex PI ⇀ PT)
be the specialization ofPI to PT guided by the inferred runtime
tests. ThenPT is well-typed.

As a special case, if no unsafe check is discovered during in-
ference thenPI is well-typed. However, if unsafe checks are dis-
covered, the use of label sequences (eg., `6.`1.H) to identify array
checks also enablesdebugging feedback. Specifically, our analysis
can pin-point the exact location of each unsafe check based on the
calling hierarchy up until an unsatisfied precondition.

9 2007/12/2

11. Related Works
Traditionally, data-flow analysis techniques have been employed to
gather information for the purpose of identifying redundant array
checks [19]. Within the scope of intra-procedural analysis, these
techniques are also used to gather anticipatable information for the
purpose of hoisting partially-redundant checks to more profitable
locations. The techniques have gradually evolved in sophistication,
from the use of family of checks in [24], to the use of difference
constraints in [3].

To identify redundant checks more accurately, verification-
based methods have been used by Suzuki and Ishihata [40], Necula
and Lee [29] and Xuet al [45]. Xi and Pfenning have advocated
the use of dependent types for array bound check elimination [43].
Their approach is limited to totally redundant checks. Moreover,
the onus for supplying suitable dependent types rests squarely on
the programmers, as only a type checker is available.

Precondition derivation with respect to a postcondition (or
check) has been formulated via generating itsVerification Con-
dition (VC) by Flanaganet al [16, 17]. Their focus was to ob-
tain compact VCs whose size is worst-case quadratic to the size
of the source. However, they do not attempt to make precondi-
tions and postconditions anysmaller through strengthening and
weakening, respectively. Furthermore, these VCs are for totally-
redundant checks. In contrast, our technique stresses on modularity
and deals with inter-procedural analysis over recursive methods,
whereas they focus on intra-procedural analysis and loops. Re-
cently, Flanagan [15] introduced the idea of inserting assertions
that cannot be proven during type checking as run-time checks.
Our use of a flexivariant specializer to insert runtime checks (after
inference) shares a similar flavour. However, our proposal is based
on inference, while his is formalised for a type-checker.

Identifying redundant array bound checks can also be done us-
ing abstract interpretation techniques over numerical domains. In a
seminal paper, Cousot and Halbwachs [11] introduced the polyhe-
dra abstract domain and defined convex-hull and widening opera-
tors for this domain. Subsequently, various other abstract domains
have been proposed, varying from conjunctive domains like oc-
tagons [28], pentagons [26] or symbolic ranges [38] to disjunctive
domains [39, 33]. In fact, safety analyzers that scale to large critical
programs like ASTŔEE [2] or C Global Surveyor [41] use elabo-
rate combinations of abstract domains to achieve maximum effi-
ciency. For example, the static analyzer that has been described by
Cousotet al[2, 10] succeeds in analyzing a program of 75 kloc with
no false alarm. It achieves this by varying the precision of arith-
metic abstract domains from interval domain to ellipsoid domain.
It also uses a decision tree abstract domain and trace partitioning
for path-sensitivity. These relational domains operate on packs of
variables for efficiency reasons. However, our analysis maintains
path-sensitivity and the same level of precision over the entire pro-
gram by exploiting modularity. Being a summary-based approach,
we have a bounded number of variables at method boundary and we
further ensure that preconditions are kept small via suitable pred-
erivation. Modularity has also been recognized as an important step
for static program analyses to scale up to precise analysis of large
programs [9] and our proposal is a solution in this direction.

To avoid fix-point iteration, Rugina and Rinard [37] proposed an
analysis method (using linear programming) to synthesize polyno-
mial symbolic bounds. While efficient, fixing a target form (with-
out disjunction) for the symbolic bound may result in loss of pre-
cision. Doret al advocated for linear constraints, expressed using
pre/post conditions, to help determine the safety of C pointers to
string buffers [14]. For their experiments, the inference result is,
however, less precise than user-supplied annotations. This is likely
due to the absence of disjunction and path-sensitivity during infer-
ence.

The idea of deriving preconditions for partially redundant
checks was first proposed in [8] to complement postcondition in-
ference on sized types [7] for a first-order functional language.
However, this early work was mostly informal and had no im-
plementation. We formalize this early idea by inferring a sound
dependent-type annotation for an imperative language, and inte-
grating its results with a program specializer. Moreover, we now
have a practical and precise implementation.

Unlike the work in [6] which uses a separate set-based analy-
sis for properties of elements in a collection, the current paper uses
arithmetic constraints to represent such properties directly for indi-
rection arrays. This decision reduces the burden of using two differ-
ent analyses. On the other hand, the set-based analysis approach [6]
may give more precise results via universal and existential proper-
ties, and deal with elements which may not be integers.

Flexivariant specialization scheme enables a trade-off to be
made, that can give up some array check optimization for a re-
duction in code size. Such trade-off can be guided with the help
of suitable path-profiling techniques[42]. Such a compromise was
originally pioneered in a technique, calledselective specializa-
tion [12], to convert expensive dynamic method dispatches for OO
programs into static counterparts, where possible. Our flexivariant
scheme supports the proposed inference with a family of specializ-
ers, with selective specialization as a possible option.

12. Conclusion
We have proposed a new inference mechanism for a dependent type
system with size relations. Our approach captures postcondition in
the presence of imperative updates, and derives safety precondi-
tions for each check encountered. Both the postcondition and safety
precondition are propagated interprocedurally, though in opposite
directions. Recursive methods are also handled through a fix-point
analysis on constraint abstraction derived via inference. The result-
ing analysis is not only flow and context-sensitive, but is also path-
sensitive. It can capture symbolic program states between local
variables, inputs and outputs. Initial experiences with a prototype
implementation suggest that such an advanced form of type infer-
ence is both precise and efficient. Just as the present analysis is em-
powered by the use of Presburger arithmetic, it is inevitably limited
by the linearity of expressible constraints. However, by first sub-
jecting the original program to pre-processing such as partial eval-
uation (using constant propagation and loop unrolling), our analysis
can discover more linear constraints, and thus further improve its
effectiveness.

Acknowledgments
This work was supported by NUS grant R252-000-213-112 and
A*STAR grant R-252-000-233-305. It was also supported in part
by Microsoft Research through its Ph.D. Scholarship program for
the second author. We thank Siau-Cheng Khoo for his profound and
sound advices. We also thank anonymous referees for their careful
comments.

References
[1] R. Bagnara, P.M. Hill, and E. Zaffanella. Widening operators for

powerset domains. InVerification, Model Checking and Abstract
Interpretation, pages 135–148, 2004.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. InACM Conference on Programming Language Design
and Implementation, pages 196–207, 2003.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds
checks on demand. InACM Conference on Programming Language
Design and Implementation, pages 321–333, 2000.

10 2007/12/2

[4] R. Bodik, R. Gupta, and M.L. Soffa. Complete removal of redundant
expressions. InACM Conference on Programming Language Design
and Implementation, pages 1–14, June 1998.

[5] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference.
In ACM Symposium on Principles of Programming Languages, 1999.

[6] W. N. Chin, S. C. Khoo, and D. N. Xu. Extending sized type with
collection analysis. InProceedings of the ACM SIGPLAN Workshop
on Partial evaluation and semantics-based program manipulation,
pages 75–84. ACM Press, 2003.

[7] W.N. Chin and S.C. Khoo. Calculating sized types. InACM SIGPLAN
Symposium on Partial Evaluation and Program Manipulation, pages
62–72, Boston, Massachusetts, January 2000.

[8] W.N. Chin, S.C. Khoo, and Dana N. Xu. Deriving pre-conditions for
array bound check elimination. In2nd Symp. on Programs as Data
Objects, pages 2–24, Aarhus, Denmark, May 2001. Springer Verlag.

[9] P. Cousot and R. Cousot. Modular static program analysis. In
International Conference on Compiler Construction, 2002.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. InEuropean Symposium on
Programming, pages 21–30, 2005.

[11] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. InACM Symposium on Principles of
Programming Languages, pages 84–96, 1978.

[12] J. Dean, C. Chambers, and D. Grove. Selective specialization for
object-oriented languages. InACM Conference on Programming
Language Design and Implementation, pages 93–102, 1995.

[13] J.J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
Past, present, and future.Concurrency and Computation: Practice
and Experience, 15:1–18, 2003.

[14] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for
statically detecting all buffer overflows in C. InACM Conference on
Programming Language Design and Implementation, pages 155–167,
2003.

[15] C. Flanagan. Hybrid type checking. InACM Symposium on Principles
of Programming Languages, pages 245–256, 2006.

[16] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. InACM Symposium on Principles of Programming
Languages, 2002.

[17] C. Flanagan and J.B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. InACM Symposium
on Principles of Programming Languages, 2001.

[18] B.S. Gulavani and S.K. Rajamani. Counterexample driven refinement
for abstract interpretation. InInternational Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2006.

[19] R. Gupta. A fresh look at optimizing array bound checking. InACM
Conference on Programming Language Design and Implementation,
pages 272–282, New York, June 1990.

[20] J. Gustavsson and J. Svenningsson. Constraint abstractions. In
Programs as Data Objects II, pages 63–83, Aarhus, Denmark, May
2001.

[21] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA:
A million lines of C code in a second. InACM Conference on
Programming Language Design and Implementation, 2001.

[22] C. A. R. Hoare and J. He.Unifying Theories of Programming.
Prentice-Hall, 1998.

[23] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of
reactive systems using sized types. InACM Symposium on Principles
of Programming Languages, pages 410–423. ACM Press, January
1996.

[24] P. Kolte and M. Wolfe. Elimination of redundant array subscript range
checks. InACM Conference on Programming Language Design and
Implementation, pages 270–278. ACM Press, June 1995.

[25] P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in

program specification and analysis. InInternational Conference on
Aspect-Oriented Software Development, March 2005.

[26] F. Logozzo and M. Fahndrich. Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses. InACM
Symposium on Applied Computing, 2008.

[27] Mikel Luj án, John R. Gurd, T. L. Freeman, and José Miguel. Elimi-
nation of Java array bounds checks in the presence of indirection. In
ACM Joint Java Grande-IScope Conf., pages 76–85, 2002.

[28] A. Mine. The octagon abstract domain. Inthe Eighth Working
Conference on Reverse Engineering, 2001.

[29] G. Necula and P. Lee. The design and implementation of a certifying
compiler. InACM Conference on Programming Language Design
and Implementation, pages 333–344, 1998.

[30] T.V.N. Nguyen and F. Irigoin. Efficient and effective array bound
checking.ACM Trans. Program. Lang. Syst., 27(3):527–570, 2005.

[31] National Institute of Standards and Technology. Java SciMark
benchmark for scientific computing. http://math.nist.gov/scimark2.

[32] Simon Peyton-Jones and et al. Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

[33] C. Popeea and W.N. Chin. Inferring disjunctive postconditions. In
ASIAN CS Conference, 2006.

[34] C. Popeea, D.N. Xu, and W.N. Chin. A practical and precise inference
and specializer for array bound checks elimination. Technical report.
http://www.comp.nus.edu.sg/~corneliu/research/array.tr.pdf.

[35] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis.Communications of the ACM,
8:102–114, 1992.

[36] W. Pugh. Counting solutions to Presburger formulas: how and
why. In ACM Conference on Programming Language Design and
Implementation, 1994.

[37] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. InACM Conference on
Programming Language Design and Implementation, pages 182–195.
ACM Press, June 2000.

[38] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis
using symbolic ranges. InInternational Static Analysis Symposium,
pages 366–383, 2007.

[39] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static
analysis in disjunctive numerical domains. InInternational Static
Analysis Symposium, Springer LNCS, Seoul, Korea, August 2006.

[40] N. Suzuki and K. Ishihata. Implementation of an array bound checker.
In ACM Symposium on Principles of Programming Languages, pages
132–143, 1977.

[41] A. Venet and G. Brat. Precise and efficient static array bound
checking for large embedded C programs. InACM Conference on
Programming Language Design and Implementation, pages 231–242,
2004.

[42] Y. Wu and J.R. Larus. Static branch frequency and program profile
analysis. InProceedings of the 27th annual international symposium
on Microarchitecture, pages 1–11. ACM Press, 1994.

[43] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. InACM Conference on Programming Language
Design and Implementation. ACM Press, June 1998.

[44] Y. Xie and A. Aiken. Scalable error detection using boolean
satisfiability. InACM Symposium on Principles of Programming
Languages, pages 351–363, 2005.

[45] Z. Xu, B.P. Miller, and T. Reps. Safety checking of machine
code. InACM Conference on Programming Language Design and
Implementation, pages 70–82. ACM Press, June 2000.

11 2007/12/2

