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Abstract

Arrays are intensively used in many software programs, including

those in the popular graphics and game programming domains. Al-
though the problem of eliminating redundant array bound checks
has been studied for a long time, there are few works that attempt to

h ressively preci nd practical. We pr ninferen h >
be both aggressively precise and practical. We propose an infere C(:‘lczatlon to eliminate array checks found to be redundant. We for-

malise our technique as a type inference system that is able to pro-
cess each method independently, and yet exploits the different con-
e?xts of its multiple callers. Successful elimination of array checks

mechanism that achieves both aims by combining a forward rela-
tional analysis with a backward precondition derivation. Our infer-
ence algorithm works for a core imperative language with assign-
ments, and analyses each method once through a summary-bas
approach. Our inferencefseciseas it is both path and context sen-
sitive. Through a novel technique that can strengthen preconditions
we can selectively reduce the sizes of formulae to suppprae-

tical inference algorithm. Moreover, we subject each inferred pro-
gram to a flexivariant specialization that can achieve good tradeoff
between elimination of array checks and code explosion concerns.
We have proven the soundness of our approach and have also im
plemented a prototype inference and specialization system. Initial
experiments suggest that such a desired system is viable.

1. Introduction

Array bound check optimization has been extensively investi-
gated over the last three decades [40, 11, 19], with renewed inter-
ests as recently as [3, 45, 14, 41, 30]. While the successful elimina-
tion of bound checks can bring about measurable efficiency gain,
the importance of check optimization goes beyond this direct gain.
In safety-oriented languages, such as Java, all bound violation must
be faithfully reported under precise exception handling mechanism.
Thus, check optimization is even more important for run-time effi-
ciency under such constraints. For example, the code motion tech-
nique is severely hindered by potential array bound violations.

Most array optimization techniques..[40, 11, 43]) focus on
the elimination of totally redundant checks. To achieve this, whole
program analysis is carried out to propagate analysis information
(e.g.availability) to each program point. Even for techniques that
handle partially redundant checks, such as partial redundancy elim-
ination (PRE)[4], the focus has been on either moving these checks
or restructuring the control flows, but without exploiting path-
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sensitivity or interprocedural relational analysis. These features are
important for supporting precise analyses.

In this paper, we propose a practical approach towards array

checks optimization that is both precise and efficient. Our approach

is based on the derivation of a suitable precondition for each array

heck across the method boundary, followed by program special-

epends on how accurately we are able to infer the states of the

program variables. To achieve this, we employ a form of depen-
‘dent type [23, 7] that can capture symbolic program states using
a relational analysis. For practical reasons, we currently make use
of an existing Presburger arithmetic solver [35] that is quite effi-
cient. Nevertheless, our proposal allows this solver to be replaced
by a more appropriate one, if desired. The key contributions of this
paper include:

¢ Forward with Backward Combination : We propose a novel
combination of forward plus backward analysis that can be
practical and precise. This combination performs the more ex-
pensive forward fix-point analysis only once per method, but
proceeds to derive individual safety precondition for each check
across procedural boundary. We provide fing formalization
and implementatiomf this combination technique for an im-
perative language. (Sec 2, 4 and 5)

e Smaller Preconditions : To obtain a practical analysis, we de-
vise a new technique to makermulae smallerby suitable
strengthening of preconditions (Sec 6). This approach trades
(some) precision for speed and has been vindicated by exper-
iments with our prototype inference system.

e Integration with Specializer: We adopt assummary-based ap-
proach that gathers preconditions, postcondition and unsafe
checks for each method. While summary-based techniques have
already been proposed for a number of program analyses [5, 9,
44], their integration with program specializer is hardly investi-
gated. We show how flexivariantspecializer could be used to
insert runtime test for each array check that has been classified
as unsafe (Sec 7).

Indirection Arrays : Our approach can analyse theunds

of elementdnside an array. This is important for eliminating
array checks for a class of programs where indexes are kept
inside indirection arrays (Sec 8). Past techniques on array bound
checks elimination have largely ignored this aspect.

¢ Prototype : To confirm the viability of our approach, we have
built a prototype inference and specializer system (Sec 9).
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2. Overview

A key feature of our approach is the three-way classification of
checks. Given a method definition with a set of parameteasd a

set of checks”, our approach will classify each cheakg C) that
occurs at a location with a symbolic program stgtas follows:

e c is safeif it is redundant under the program stateat the
location of this check. This holds if the following is valid:

(s=¢)

e ¢ is partially-safeif it may become redundant under an extra
condition. This holds if there exists a satisfiable precondition
pre (expressed in terms of variables from oty such that:

@)

The precondition can be derived usinge = (VL - -sVc),
whereL is the set of local variables, denoted\ays(s, c) — V.
The functionvarsreturns the free variables usedsiandc.

(pre As = c)

e cisunsafeif false is the only precondition that can be found
to satisfy (1). In this case, the analysis will (conservatively)
conclude that the checkmay fail at runtime.

Partially-safe checks are special in that they can be propagated

across methods from callees to callers. This mechanism can fur-
ther exploit the program states at callers’ sites for the elimination
of checks. While the above classification is general and may be ap-
plicable to any kind of checks, in this paper we shall be focusing
exclusively on array-related checks.
Let us highlight the above check classification using the

example at the top of Figure 1. In this examplendint returns
a random integer, whilebs converts each number into its posi-
tive counterpart. The set of parametéfsat method boundary is
{a, j,n} wherea is an array with indices from to 1en(a)—1. The
foo method contains two array accesses at locatiprmd/,. The
symbolic program statesygs) at these sites may be affected by
the type invariants, conditionals, imperative updates and by prior
calls. Computing the states for the method entryand the loca-
tions¢; andéz, we get:

sps (o) len(a)>0

sps (/1) sps(fg) A i=j+1 A (0<i<=n)

sps (42) sps(p) N i=j+1 Am>=0

the check (when the conditional test is unsatisfiable). In general,
the simplification may drop disjuncts that violate the type invariant
(1en(a)<=0) or remove conditions already present in the type in-
variant (1en(a)>0). We perform each simplification of a formula
¢1 under type invarianp, by the operatiorfgist¢; givengs). This

gist operation yields a simplified tergy such thatpzAgs = ¢1 AP

and was introduced in [36].

While a goal of our analysis is to obtain weaker preconditions
for precision, this might impact the scalability of our analysis. To
obtain smaller (but stronger) preconditions, we apply a similar sim-
plification based on thgist operation, but more aggressive. For ex-
ample, simplifyingpre (41 .H) with respect to the program state of
the checld:i - sps (¢1) yields a smaller preconditiofj <=1len(a)-2)
without the disjunct that allows avoiding the check. Our proposal
trades off precision for performance and is crucial for overcoming
the intractability of solving large Presburger arithmetic formulae.

Float foo(Float[] a, Int j, Int n)

lo:{ Float v=0.0; Int i=j+1;
if (0<i<=n) then v=({1:ali]) else ();
Int m=abs(randInt());
v+(2:alm])

ﬂ Inference
Float foo(Float[Int®] a, IntJ j, Int™ n)

where (j<s—2)V (n<jAj+1>s);
{01H : (j<s—2)V (n<j Aj+1>s)}; {la.H} {---}

ﬂ Specialization

Float foo(Float[Int®] a, IntJ j, Int™ n)
where (j<s—2) V (n<jAj+1>s); (j<s—2) V (n<jAj+1>s)
lo:{ Float v=0.0; Int i=j+1;

if (0<i<=n) then v=({1:alil)else ();

Int m=abs(randInt());

v+(if (m<len(a)) then /2:a[m] else error) }

Figure 1. Inference and Specialization : An Example

One feature of our optimization is its formulation in two stages:
type inference followed by specializatidrhe type inference stage
processes methods in reverse topological order of the call graph. It
computes post-states at each program point, classifies checks and
propagates preconditions as new checks at each method boundary.

Based on the earlier classification of checks, we can establish thatlt also marks all unsafe checks. These information are collected for

the low-bound checks (@t and¢s) are safe, since:
sps(£1)=(i>=0) and  sps({2)=(m>=0)
For the high-bound checks (denoted hy1 and¢;.H), we derive
(the weakest) preconditions through universal quantification of the
local variables, as follows:
pre({; .H) =Vi,m- (-sps(¥1) V i<len(a))
=Vi,m (—(len(a)>0 A i=j+1 A 0<i<=n)Vi<len(a))
=1len(a)<=0 V (j<=len(a)-2 A 1<=len(a))
V (1<=len(a)<=j+1 A n<=j)
pre({2.H) =Vi,m- (—sps(f2) V m<len(a))
=Vi,m(—(len(a)>0 A i=j+1 A m>=0) V m<len(a))
=1len(a)<=0

These derived preconditions may be the weakest, but they do not.

take into account the type invariant and thus are larger than needed
The type invariantien(a) > 0 can be used to simplifgre(¢;.H)
to false andpre(¢;.H) t0 (j<=len(a)-2 V n<=jAj+1>=len(a)).
The last formula contains a disjun@i<=1en(a)-2) for satisfying
the check, and a second disjuigt=jAj+1>=1en(a)) for avoiding

1An example of a type invariant is that the size of an aeagenoted by
len(a), is positive (a design decision we took for our language).

each method declaration: a postconditiona set of preconditions
®, a set of unsafe checkg and annotated types, .., 7.

Tom (71 v1,...,Tk Vi) where A; ®; T {body}
For example, after type inference on thw method, we would ob-
tain the method displayed in the middle of the Figure 1, where the
unchanged method body is replaced {y.}. During the actual
inference, we use size variables instead of program variables. For
example, size variables j andn denotelen(a), j andn respec-
tively.

The inference result is then used by the specialization stage to
insert runtime tests to guard unsafe checks and to désinget
programs that are well-typed\ell-typed specialised methods are
decorated with a postconditial and a preconditiog, .. :

70 m (T1 V1,..., Tk V) where A; ¢pre {body}

The preconditionp,. is a conjunction of checks frone that

are guaranteed safe at each call site. For exampig;eif¢; . H)
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meth*
t mn (([ref] t v)*) {e}
c|v|if vthenejelsees |v=c¢

meth

|t v=e1 ;e2 | mn(v*)
t | E[Int7 KRR Int]
Void | Int | Bool | Float

et ot

Figure 2. SourcelMP language

is found to be safe when analyzing the call sites of methad

we can generate the specialised (and well-typed) method at the
bottom of Figure 1. Note thah = ¢,.. holds for this particular
example, but in general the two formulae may be different. This is
S0 as postcondition is computed using over-approximation, while
precondition is computed using under-approximation. Moreover,
postcondition may capture its method’s result(s), but not so for
precondition.

Well-typed programs are safe in that no array bound errors are

P = meth*
meth == 7 mn (([ref] 7 v)*) where A; ®; T {e}
prim == T1mn ((7 v)*) where A; ®;C
e u= - |[L:mn (v¥)
7,7 u= 1|7[Int%!,..., IntSk]
7 € PrimAnnType
= Void| Int® | Bool® | Float
® u= {(T:¢)*} (Labelled Preconditions)
YT == {("*}  (Unsafe Checks)
¢ == {(IT:e)*} (Labelled Runtime Checks)
¢ € Label
¢t = £|4.--- £, (Label Sequences)
o, A ar=az | a1<az | p1 P2 | p1Vd2 | q(s*)
a == c|s|s|cxa|artaz
wheres denotes a size variable
Q u= {(g(s")=9¢)"}
Figure 3. InferredIMP; Language

ever encountered by any array access during program execution.

This safety property is guaranteed by either the program context
(for array checkg; .L andés.L), or the precondition of each method
(for array checle; .H) or the inserted runtime test (fés.H). In the

rest of this paper, we shall formalise a type inference system to
derive well-typed programs for a core imperative language.

3. An Imperative Language

To formalise our type inference we first introduce a source language
IMP (see Figure 2), where types, denotedtbgndt, do not have
annotationsImMpP has support for assignments, conditionals, local
declarations, method calls, and multidimensional arrays. Typical

Figure 3 summarises a language with dependent type, called
IMPz, which is designed to be the target of our inference. Each

language constructs, such as multi-declaration block, sequencemethod declaration captures three information: an input-output re-

calls with complex arguments can be automatically translated to
constructs inlMP. In addition, loops can be viewed as syntactic
abbreviations for tail-recursive methods, and are supported by our
analysis with the help of pass-by-reference parameters.

3.1 Target Language
The target of our inference system is a corresponding imperative

lation (postcondition)A, a set® that contains a precondition for
each partially-safe check, and a set of label sequencesch se-
quence representing the location of an unsafe check. The labels
from & and 7 identify call sites from the body of the current
method. This is enabled in our language since every method call
is uniquely labelled The suffix notatiors* denotes a list of zero or
more distinct syntactic terms separated by appropriate separators,

language with dependent types where types may be annotated withwhile s+ represents a list of one or more distinct syntactic terms.
size variables. For example, a boolean value can be denoted by For a non-recursive methash, the triple (A, ®, T) can be de-

Bool? whereb = 0 representsalse and b =1 representsrue;

an integer value can be denoted byt with »n to denote its
integer value, whil&loat[Int®] can denote an array of floats with
elements. Input-output relation between size variables from method
parameters and result is captured aftenihee keyword:

Int” randInt() where true;...
Int” abs(Int® v)
where (a<OAr=—aV a>0Ar=a)A(a’=a);...
Int” add(Int® x, Int® y)
where (r=a+b) A noX{a,b};...
Bool” lessThan(Int® x, Int® y)
where (a<bAr=1V a>bAr=0)AnoX{a,b};...

Note thattrue for randInt signifies thatr is unbounded. Also,
non-trivial size relations can be supported through disjunctive
formulae. Theprime notation is used to denote the state of size

rived via inference of the method body (since the triple for each
method called inmn are already inferred.) To support recursive
methods, we make use cobnstraint abstractiongadopted from
[20]). For each mutual-recursive method, we first derive a (recur-
sive) constraint abstractioB of the formq(n*) =¢. These abstrac-
tions are used by fix-point computation to provide a sound and pre-
cise analysis for recursive methods. An adaptation of the fix-point
approximation from [11] is detailed via examples in Section 5. Be-
sides constraint abstractions, our language of constraints contains
conjunctions and disjunctions of linear (in)equalities. We make use
of a Presburger solver [35] (with support for universal and existen-
tial quantifications) to eliminate local variables or simplify formu-
lae.

Primitive methods (denoted tprim in Figure 3) lack a method
body and are instead annotated with a postcondition and a set of

variables at the end of the method. Parameter values that arepreconditions to support type inference. A primitive is also anno-
unchanged across method calls are captured using the notatiortated with a set of runtime testor use by the specializer : if some

noX{a,b}=(a’=anb’=b) as a shorthand for “no change in state”.
This no-change in state occurs mostly for parameters that are

precondition is not satisfied at a primitive call site, its correspond-
ing runtime test is to be inserted. Array operations are implemented

passed by value. Pass-by-reference parameters are also supportess calls to primitive methods. For example, 1-dimensional array op-

in our language using theef keyword.

erations with element typeare shown below:
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7[Int"] newArr(Int® s, 7 v)
where (0<s Ar=s A s'=s); {S: s> 0}; {S: s>0}
Int” len(z[Int®] a)
where (r=s A s'=s); {}; {}
7 sub(7[Int*] a, Int? i)
where (0<i<s A noX{i,s}); {L: 0<i,H: i<s};
{L: 0<i, H: i<len(a)}
Void assign(r[Int®]a,Int’i, 7 v)
where (0<i<s A noX{i,s}); {L: 0<i, H: i<s};
{L: 0<i,H: i<len(a)}

The primitivenewArr returns a new array with all elements initial-
ized to the value, 1en returns the length of the arrayub returns
an array element from the specified indexvhile assign updates
the specified array element with the vakud-or example, an array
accesa[i] is (automatically) converted teib(a, i), while an array
updatea[i] = v is converted to the primitive cadlssign(a, i, v).

4. Type Inference Rules

Our inference system analyses and propagates state information so

as to determine if an array checksafeand if apreconditionis to
be propagated to thmethod boundaryThe type judgment for the
entire program i, -; P~ P;. It derives a progran®; € Imp;
from a programP € Imp and a set of primitive declarations,, .
The type judgement for expressions is specified as follows:

VilbAblke~er i1, 01,9, 7

HereV is a set of size variables (callédundary variablesavail-
able at the boundary of the method in which the expressime
sides.I' is a type environment mapping program variables to their
annotated types. The above judgement statesethall be trans-
formed intoe; during the inference: the target expressigrwill

shows how updates are effected by a sequential composition op-
erator,ox, whereX denotes a set of size variables that are being
updated.

The following depicts the inference step for assignment:

T'(v) = Int” TI'(u) = Int™
Vil Abv4+u~v4usInt", AAr=n'+m/,0,0
Ag = assign(AAr =n’ +m/,Int™, Int")
Vil Abv=v+u~v=v-+u:void, Ao, 0,0

The functionassign performs the necessary sequential composi-
tion:

assign(A,7,71) =qey let X = FSV(7); Y = FSV (1)

in AY.(A ox equate(prime(T),T1))

For our example, the correct post-state of the assignment can be
computed as follows:

“((AAr=n'+m') ofpy(n'=r))
= Ir- ((m'=24n'An'=5Ar=n'+m’) o1 (n'=7))
= Jr- (Ing - m'=24noAno=5Ar=no+m’An'=r)
= (m'=7 An'=m’+5)

More formally, sequential composition is defined as:

$10x d2 =ges AR - p1(¢1) N p2(¢2)
where X = {s1,...,sn} are size variables being updated
R = {r1,...,rn} are fresh size variables

pr={sj—=ri}jo;  p2={si— i},

4.2 Path Sensitive Inference

The [1£] rule attempts to track the size constraint of condition-
als with path sensitivity. The two conditional branches are distin-
guished by assuming the conditional-test result to be eithar

0, representing therue or the false value, respectively. Given

e = if uthenvelse5andl’ = {v:: Int™, u:: Bool®}, the rule de-
rives Az combining via disjunction the inference results of both
branches. We replace both andr, (the resulting sizes from both

contain types annotated with fresh size-variables and labels thatbranches) by the final resulting size

uniquely identify method calls. Both ande; have the same un-
derlying type. Furthermore, successful evaluatioa (dnde,) re-
quires the validity of preconditions, and the inclusion of the run-
time testsY. Successful evaluation efalso changes the program
state fromA to A;.

For convenience, our inference rules ensure that the size vari-

ables occurring in the annotated typere uniqueje., FSV ()N
FSV(I') = 0 where FSV returns the set of free size variables

found. Some of the interesting inference rules are specified in

Figure 4. In these rules, we use= fresh() and ¢ = fresh() to

AL =AA(B=1) Ay = AA(K'=0)
ViT;A1 v~ v Int™ A A (ri=n'),0,0
V;T; A2 - 5~+5:: Int"2, Ag A (r2=5),0,0
Az = AN ((U'=1Ar=n")V (b'=0Ar=5))

Vil Ak e~ e Int”,As,0,0

4.3 Precondition for Safety of Check

generate a new size variable and a new label, respectively. ForPrecondition derivation is essential for the detection of safe checks

annotated typesi = fresh(t) (or # = fresh(7)) returns a new
type + with the same underlying type as (or 7), but anno-
tated with fresh size variables. The functiequate(r1, ) gen-

across method boundaries. A check is proved safe when a call con-

text implies the call’'s preconditions. Otherwise, the preconditions

associated with a call are replaced by preconditions associated with

erates equality constraints for the corresponding size variablesits caller. The.generated preconditions are expressed in terms of the
of its two arguments, assuming both arguments share the samedoundary variables. Theau] rule formalizes this process.

underlying type. For example, we havguate(Int™, Int™') =
(n = m’). The functionrename (1, 72) returns a mapping instead,
e.g.rename(Int™, Int™ ) = (n — m’). A conditional constraint is
expressed ag <1 b > (2 =4 if bthen(; else¢z. For the rest of this

As an example, consider inferring a primitive callb(z, j)
under the type assumptidn = {v :: Int%,z :: Float[Int™],j =
Intd} and the pre-statd = (m/=mAm/=10Aj"=v'+2Av'=v+1A
v’>5). Furthermore, let the set of boundary variablese {v, m}

section, we highlight the important aspects of our inference system @nd j be a local variable. The two array-bound checks of the

via examples.

4.1

Consider an assignment expressioca v + u, with a pre-state for-
mula A = (m'=2+n’An'=5) and I' = {u :: Int™,v :: Int",...}.

Inferring Imperative Update

sub primitive, 0<i andi<s, are transformed into the following
preconditions:

(A => p(0 <1i))]y =s true
(A= p(i<s))ly =s(v<7)

prey =
preg =

This example shows how th@ime notation is used to capture the wherep = {s — m, s’ — m’,i — j,i’ — j’}. The substitution re-
latest values of size variables at each symbolic state [22]. It also places the size variables associated with the formal parameters of
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[Var} [VarfAssign}

I'(v) =7 71 = fresh(r) Vil Ak e~ep im, A, @, Y
¢ = equate(prime(T), 1) T(v) =7 Ag=assign(A1,7,71)
ViliAFv~ve1, AN, 0,0 Vi A Fv=e~> v=ey :: Void, A, ®, T

(1]
I'(v) =Bool® ViI;AA(W =1)F ey~ ez :m, A1, ®1, Ty
7= fresh(t1) V;T;AANQD =0)Fex~ eq T2, Aa, P2, To
pi = rename(t;,7) Vi € {1,2} A3z =p1A1V paAas e5 =if v theneselseey
VT Al if vthenej elseeg ~» e5 it 7, Az, &1UDo, T1UT 2

[call]
D(vi) =7 Vi€ l.n 7= fresh(?) U=Ur, FSV(r;) £= fresh()

(#m(#1 21,...,7n Tn) where Apm; @i+ ) € PUPm  ®m = {(¢F 1 61),.., (¢} : o1)}
p = rename(7, 7) W X, {rename(7;, 7;)} pre; =s (A > pdi)lv
mkChk(pre;, .47, &, T)Viel.k d=UF & T=UL 71

Vi A Em(viin) ~ L:m(viig) =7, Aoy p(Am), @, Y

[Mtd—Declare}

md =tm(tivi,...,t, vg) {e} 7 = fresh(t;) Vi=1.n 7 = fresh(t)
V=Ur | FSV(r) W=VUFSV(r) T ={v1:71,...,05:7%}
Aipit = nit(T) ViT;Ajpir be ~ er o, A0, T Q= {m(W)=A}
Fr md ~ 7 m(11 v1,...7gv) where m(W); ®; Y{e1} | Q

[MkChk—1] [MkChk—2] [MkChk—3|
pre = true pre = false —(pre = true V pre = false)
mkChk(pre, £+,0,0) mkChk(pre, £1,0,{¢1}) mkChk(pre, £+, {¢* : pre}, )

Figure 4. Type Inference Rules

sub with those from the actual parameters of the call. The new pre- ant. The invariant captures a size relation to relate the parameters of
conditions are obtained by simplifying:=() the result of the oper- an arbitrary-nested recursive call with those of the first call. Once
ations &) and|y . The operators- formulates the implication of the postcondition and the invariant are determined, we can compute
an array-bound check by the corresponding calling context. It en- the program state at each program point and derive preconditions
sures that all size variables are expressed in terms of those of thesimilarly to the non-recursive case. Details are given next.

call arguments, and primed variables are used in the post-state of

the caller: 5. Recursion Analysis

A b =ges (A= p(d)) Where p={s1s),..., snrosh}; Our type inference rqles effectively determine both a postconditien
— and a set of preconditions for non-recursive methods. For recursive
{s1,...,8n} = FSV(¢) > : - -
) ) ) methods, these rules derive a (recursive) constraint abstraction that
The operatoty. projects a constraint to the boundary variableiset  can be analyzed via fix-point analysis. The analysis steps are: (i)
through quantification of (size variables from) the local variables. getermine a fix-point for the constraint abstraction, and derive the

These variables are universally quantified, so that the resulting " - : : : ;
PP ; AP method postcondition, (ii) determine an invariant for the recursive
%r(tar?igncda:gg?' Is strengthened (weakening viguantifier is unsound calls, and (jii) derive preconditions for checks inside recursion.

dlv =dges VW - ¢ whereW = FSV(¢) — V. 5.1 Deriving Postcondition

The postcondition can be derived from a recursive constraint via a

After its derivation, each precondition is classified by the rela- fix-point approximation procedure pioneered in [11] and adapted
tion mkChk(pre, A, B, C) to determine if the corresponding array for a disjunctive domain in [1, 18, 39, 33]. Let us consider a con-
bound check can be eliminated safely, be left as runtime check, or straint abstraction of the form(n*,r) wheren* denote inputs,
decided at a later stage (a partially-safe check). Héris, a label while » denotes its output. For simplicity and without loss of gen-
sequence leading to the specific bound-chezkytputs the check erality, let us assume we have a constraint abstraction with two re-
if it is partially-safe, and outputs the label sequence identifying ~ CUSive invocations of the following form.
the check if it should be left at runtime. For the example above, we q{n*,r) = doVoila(s™,r1),q(t",r2)]
have mkChk(pre,, £.L,0,0) and mkChk(preo, £.H, {{.H : prey}, (),
where¢ is a new label associated with the catib(z, j). These Note thate: [, -] is a formula with two holes containing the two
mkChk clauses indicate that the low-bound check is safe, while the recursive invocations, while, is the base case. The fix-point of
upper-bound check is partially safe. such an abstraction can be formalised by the following series:

For recursive methods, we first employ a fixed-point computa- go(n*,r) = false
tion to derive both the method postcondition and a recursive invari- Qi1 (n*,7) = GV [ai(s*,m1), qi (t*, 72)]
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For the above fix-point series to converge, we perform approxima- derive a multi-steps relation, known ascursive invariant The

tions via two techniques, known &sllling andwidening latter can relate the parameters of an arbitrary recursive call with
Hulling approximates a set of disjunc{s¢; with a conjunct those of the first call.
¢ such that(\/ ¢;) = ¢. This process can be refined by hulling One-step relation can be directly extracted from each recursive

selectively a subset of closely-related disjuncts. We use the notion constraint abstraction. Given the earlier abstraction (of two recur-

of affinity to characterize how closely related is a pair of disjuncts SIV€ invocations)g(n*,r) = ¢oVé1la(s*, 1), q(t*, r2)]. We can ob-

[33]. This selective hulling process is denoted\py; =;, ¢. ta*ln ahonhe-stt?p relation, namffi*that atﬁemptg tlo relate the input
Conjunctive widening takes a formu)g ¢; and drops (by re- n* ith that of its recursive call", as shown below.

placing withtrue) those constraints; that are changed compared ~ I(n*,7*) = ¢1[/\ (s = 2)*, q(t*,r2)] V 1 [\ (t = 7)*, q(s™,71)]

to the previous step. To apply the widening operator to a disjunctive

formula, we first look for pairs of disjuncts (from the current and \wjt this relation, we can now apply fix-point analysis to obtain:
the previous step) to widen and then apply the conjunctive widening

on these pairs [33]. Let us denote widening=by. We shall apply Ii(n*, 2%y = I{n*, %)
each fix-point approximation until we obtain a formugn*, r) Tipa(n*, 1) = Li(n*, 7*) V (32" - Ii(n*, 2*)AL{z*, i)
such thatg,1(n*,7) = g»(n*,r). This test indicates that a post
fix-point g, (n*, r) has been reached. We derive the following recursive invariant via fix-point analysis:
sumveoys, i, 4, 5,2, 7) = (§=5)A(G=§)A(0<i<i<s, j+1)
Methods with Postconditions:
Float sumvec(Float[Int®] a,Int’ i,Int/ j) The recursive invariant is important for deriving safety precondi-
where sumvec(s,i,j),. .. tions of checks inside recursive methods, as elaborated next.
{ if i>j then 0.0 else {Int v= /;:sub(a,i);
v+ly:sumvec(a,i+1,3j) } } 5.3 Deriving Precondition
Float sum(Float[Int®] a) where sum(s),... . . .. - .
{ Int 1=f3:len(a); f4:sumvec(a,0,1-1) } Our inference can derive preconditions for checks inside recursion.
Due to recursion, such checks may be encountered multiple times.
Constraint Abstraction : We propose to separate out the check of fingt recursive call
sumvec(s,i,j) = (1>7)V(i<j A 0<i<s A sumvec(s,i+1,7)) from the checks of theest of the recursive calls. The reason for
this is that recursive invariant that we derive is applicable to all
Figure 5. Sum Vector Program recursive calls, except the first. Consequently, the program state

for the first check and the program state for the recursive checks

Consider the simple summation program from Figure 5, where are different. More specifically, consider a chedebelled as’ at
the constraint abstraction obtained from our inference rules is also Program context in a recursive methogh with invarianti. Its two
given. To obtain a closed-form postcondition, we apply fix-point Preconditions can be derived as follows:
analysis starting witffalse, the least element of the disjunctive preFst(f) = VYL-(s= c) where L = vars(s,c) — V
polyheqlron'domaln. Due to the use of y\ndenlng, such fix-point preRec(f) = VL - (sAi = c) where L = vars(s,c,i) — V
approximationalways terminatesFor brevity, we display related ] )
constraints like(—1<i A 0<i A i<j) using the abbreviated form For the sumvec example, we would derive two sets of precondi-

(j—1,0<i<y). tions, namely:
(5.4,f) = fal preFst(/1 L) = (j<i)V(0<i)
sumvecy(s, i, J alse Fst(f1 H) = (i<i)V(i
sumveey (s, i, j) = (i>5)V(i<j A0<i<s A (3ir-ir=i+1Afalse)) ool = g V<)
(>7) Bl l B = (12 W (s i€ —1IV(s< i i
sumvecy(s, i,j) = (i>7)V(i<j A 0<i<s A (Fir-ir=i+1Ai1>j))) preRec((1.H) = (j<s)V(s<jAi<—1)V(s<j,1)
(i>7)V(0<i<s A i=j) These preconditions are propagated to the caller of eaehec

sumvecs(s, 1, j) (1>7)V(i<j A 0<i<s A (Fiy-i1=i+1
(11>7 V (0<i1<s A i1 = j7))))

(i>7)V(0<i<s—1 A j=i+1)V(0<i<sAi=j)

call. Note that the precondition for (rest of the) recursive checks for
¢1.L is totally safe, but the first check éf.L can be guarded by a

L T T 1

w (5))V(G—1,0<i<j<s) condition (<i)V(0<i). These differer_1t _sce_narios of array che_cKS
sumvecy (s, i,§) = (i>)V(i<j A 0<i<s A (Jiy-i=i+1 can b_e _exp!0|ted by program speC|aI|za_1t|0n, So as to maximise
A (i1>7 V (0<it<s—1 A j=i1+1)V(0<i1 <sAi1=5))))) the elimination of redundant checks whilst being mindful of the
=p (i>5)V(j—2,0<i<j<s) potential for code explosion. We describe such a specialization

= (1>))V(0<i<j<s) process in Section 7.

sumvecs(s,4,j) = (i>7)V(i<j A0<i<s A (Fiy-i1=i+1

N e s 6. Deriving Smaller Formulae
Fix-Point Detected: sumvecs (s, i, j) = sumveca(s, i, ) An important property of program analysis is efficiency, and this is
particularly so for an inference system based on Presburger arith-
metic. Presburger arithmetic can give highly accurate analysis (with
sumveds, i, 7) = (1>7)V(0<i<j<s) disjunctions and quantifiers) but has double-exponential complex-
ity, namely22w wheren is the size of its formulae. A summary-
based analysis like ours brings about a smaller number of size vari-
Within each recursive method, we may have checks that must beables at each method boundary than a global analysis approach.
optimized. To deal with this, we compute another constraint, but With this decrease, the main proviso for efficiency is to ensure that
this time, for just the input parameters (excluding the results of the pre and postconditions are kept small in size.
method). More specifically, we build a one-step size relation to A major reason for large formulae is the presence of disjuncts
relate the parameters of the next recursive calls with those of therelated to the specification aggregation problem observed in [25].
first call. This relation is then analysed via fix-point analysis to To counter this effect, a derived postcondition can be weakened

We reach the following fix-point in five iterations:

5.2 Deriving Recursive Invariant
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through thehulling of its disjuncts. However, applying a weakening

process is unsound for preconditions! For preconditions, it is only Pre-Conditions foy

safe to strengthen and we propose a new technique that improves from 4, from ¢,

the analysi_s efficiency at a Ic_)\_/v cost ir_1 precis_ion. We _perform the L (1 H %3 (s H

strengthening of the preconditi@n... using thegistoperation from

the Omega library [36]. true ! true P2
Given a check which occurs at a location with program state Pre-Conditions fop

s and local variables’,, we have earlier derived the weakest from ¢5 from 4,

precondition usingre = (VV}, - —~sVc). This derived precondition

is unsuitable due to the negation of a (possibly very large) program ts.01 H l-loH | bl H | byl H

state formulas. To derive smaller preconditions, we may simplify true b3 b4 false
pre using a valid state; for which (3Vy, - s)=-s; holds. Pre-Conditions fomain
e One suchs; that can be used is thgpe invariantinv at method from £5 from 4
entry. Let us refer to this technique of usi(uistpre giveninv) b5 b3 loH | b8y 00 H | ls.l1.H | ls.lo.H
asweak pre-derivation true true false | false

A second technique is to us®/, - s itself. Let us refer to this
technique usinggistpre given3V/, - s) asstrong pre-derivation
This technique would strip off all thavoidance conditions

from the derived precondition, which may result in some loss t1q(---)where --- {{1.H: 61, £2.H: do}, {}
of precision P Yy t2p(---) where - {{3.lo.H: ¢3, la.l1.H: pa}, {la.l2.H}
P ) void main() where --- {}, {ls.¢1.H, {s.l2. H}

This corresponds to the following inferred method headers with
partially-safe and unsafe checks.

To recover this loss of precision, we also propose a third tech- . .
nique, calledselective prederivatignwhich would first obtain Thus, there are three unsafe checks that must be residualized at

a variant ofav;, - s that is weakened by removing conditional ~ Un-time, namelys.t> .1, £6.¢,.H ands.¢2 1. The other checks are
tests froms. either safe, or partially-safe with the possibility of becoming safe
using the context of the caller. An aggressive approach to elimi-
For example, consider a symbolic program state from the recur- nating checks ipolyvariant specializationThis aims at creating
sive sumvec method:3 7 - s>0/\i<jA(0<i<i<s, j+1). After strip- multiple specialized methods for each method definition, such that
ping off its conditional test,<j, we would obtain a weaker state: ~ each specialized version of a method has a different set of array
checks being eliminated. Its application on our example program

30 s>0N(0<i<i<s, j+1) yields the following result:

Simplifying the precondition ofj <s)V (s<jAi<—1)V(0<iAs<j, i) voidmain() t2p(---) t1q-1(--) where .., p1Ad2

with this program state results in a much smaller precondition, {- where .., $3/\p4 {- )

namely j<s, that is obtained by both selective and strong pred- ~ P( ") { OTIRY vi= (sug(?évli))?

erivations. This is in contrast tg<s)Vv(s<jAi<—1)V(s<j, ) that 03} ALl assign(a2,12,v1) }

is obtained by V\{eak prederlvatlon. q2(---)} t1q.3(---) where .., true
In our experiments (see Section 9), we tested the three pred-

erivation techniques. When compared to the weak prederivation 1 q.2(---) where .., ¢; vi = (if (i1 < len(al))

technique, we were able to reduce the size of preconditions on { --- then sub(al, il)

average by 63.4% for selective prederivation and by 81.8% for vl = sub(al,il); else error);

strong prederivation. We found the selective prederivation to havea  if (i2 < len(a2)) then if (12 < len(a2)) then

reasonable compromise between efficiency and precision. Further- ~ assign(a2,i2,v1) assign(a2,12,v1)

more, we achieved a significant reduction in the inference times 'S¢ error } else error }

needed by some larger programs which fail to complete in reason- Note that three versions afhave been created to handle its three
able (allotted) time, otherwise! calls under different calling contexts.
We propose dlexivariant program specialization scheme in
. . - . this paper. As special cases, we can either support polyvariant or

7. Flexivariant Specialization mongvgriantspeF::iaIizations. For polyvariance, vsg canpac);\\i/eve it by
The objective of specialization is to place run-time tests (for unsafe never attempting to weaken any of the configurations encountered.
checks) at their respective primitive operations with the objective For monovariance, we can achieve it by weakening each configu-
that array operations become sadad the array checks are done  ration encountered to its most conservative variant with maximal
minimally. To this end, we specialize the existing method defini- unsafe checks. For this example, the monovariant case will weaken
tions with information about run-time tests. the configurations of botf 1 andq_2 to q_3. Even thoughy_3 is the

To understand the effectiveness of various approaches to spe-weakest configuration, it still has two low bound checks eliminated.
cializing method definitions, we examine the following example A key feature of our flexivariant specialization scheme is its

program: ability to trade-off optimization for a reduction in code size. Fur-
thermore, it is possible to achieve such trade-offs with minimal loss
void main() t2p(---) t1q(---) in performance. For example, if it can be determined ghaton-
{- {- {- figuration occurdnfrequently we may weaken it intg_2 to save
l5:p(-e); l3iq(--); vi=({1: sub(al,il)); on code size with little loss in performance.
e e £o: assign(a2,i2,v1)} Flexivariant specialization of a programinto an optimized pro-
lo:a(---)} €azq(---)} grams is declared as followss ., P — s. Specializing a method
requires information about the set of runtime tests to which calls
Let us assume that the results of inference are as follows: in the method body may lead. Thus, a specialized method can be
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identified by a triple comprising the original method name, a set stored; Additionally, the indices of these elements are kept inside
of label sequences associated with the relevant runtime tests, and an indirection array. Lujaet al[27] proposed a solution to handle
new method name uniquely defined by the first two components of indirection arrays via a runtime mechanism. Our system handles

the triple. We call such a triplespecialization signaturéor signa-
turein short), and a set containing such signaturepecialization
cache(or cachein short).

(m, s, 1) S SSig = MName x LSet x MName
0,0y ,0N,ON €  SCache = P(SSig)
¢ € LSet = P(Label™)

The specialization of an expression is defined by:

P, 0, ¢ l>feim e — e1, ON

The specialization cachedrives the process, whilecontains the
checks to be residualized. New specialization points created during
specialization are stored ixy. We highlight the most important
specialization rules below.
An array operation is specialized [Bpec—Prim] by calling
the respective primitive method without array checks under the
condition that the combined runtime checks for this operation,
is true.
[Specfprim]
m(T1 Z1,...,Tn Tn) WhereA, &, C € Pp,
p=[x1—vi,...,Tn — Vn]
e1=N{pe| LcesNn(c:e)e C}

eg = if e; then m(vl, ey vk) else error
., ) < (e1 = true) > eg
..,Uk)) — €3, @

egzm(vl,..
P, o, ¢ >

£ :m(v1,.

Here, a label sequence of the folm occurring in the set rep-

resents an array check to be residualized. Its code is available atr

the corresponding primitive method declaration. Variable substitu-
tion is needed to residualize the code. All codes thus generated ar
combined as a conjunct, named which is then wrapped as a run-
time test for the primitive call tan. If the runtime set is empty —
signified bye; beingtrue — them call will not be wrapped by a
conditional.

Similarly, user-defined methods are specialized with respect to
the set of runtime testyspec—call;]). Weakening of configura-
tions by W may enlarge this set of runtime tests. Specialization

produces a signature for this specialized method if the latter has

€

indirection arrays and relies entirely on compile-time analysis.

To support programs with indirection arrays, the bounds of their
elements will have to be captured using an additional size variable
a Via a new annotated type for integer arreyt®[Int*]. Precise
tracking will allow us to analyse the indexes retrieved from such
integer arrays. As the array elements are being changed by the
assign primitive, their bounds may also change during program
execution. Such size properties are thereiongable To handle
them safely, we require the support of an alias analysis, such as
the one proposed in [21], that could be used to identify may-aliases
amongst the integer arrays.

In addition to alias annotation, the main extra machinery is a set
of enhanced primitive declarations (preconditions and runtime tests
are unchanged, so we replace them for brevity with

Int®[Int”]| newArr(Int® s, Int? v)
where (0<s Ar=s A a=v A noX{s,v});...
Int” sub(Int®[Int®] a, Int? i)
where (0<i<s Ar=aAnoX{i,s,a});...
Void assign(Int®[Int®] a, Int? i, Int? v)
where (0<i<sA (a'=vVa'=a)AnoX{i,s,v});...

The array elements are updated byihesrr andassign prim-
itives, and read by theub primitive. In particular, the formula
(a'=v Vv a’=a) captures a weak update operation with a new ap-
proximation to the state of elements in the array. Furthermore, we
may even track the relation between array indexes and their ele-
ments by using the annotated type:(::) [1nt*] with a new size
variable: to denote index positions. By using primitives with such
type declarations, we can selectively support increased precision
or our analysis. Note that both the inference and the specializer
work with the above indirection array primitives as well as with the
array primitives without indirection from Section 3.1.

Let us illustrate how array indirections are analyzed via a simple
example that initializes an array with a range of integer values:

Void initArr (Int®[Int®] a, Int’ i, Int’ j, Int™ n)
where initdrr{a,s,i,j,n)
{

if i>j then () else {alil=n; initArr(a,i+1,j,n+1)} }

Using the fix-point analysis described in Sec 5, we can obtain

not been recorded in the current cache. Otherwise, it reuses the spethe following post-condition which captures the initialization of the
cialised method that has been recorded previously, as specified in@fay elements:

[Spec—Callz] .

[SpeC7Calll]
.Tkxk) where A, ®, Y {e}) € P
Sl = {f+ |él.ﬁ S C}UT
(m,s2,-) €0 ms = genName(m,s2)
P, 0, ¢ D%ew 01 :m(v1,...,vg))
= ms(v1,...,0%), {(Mm,s1,ms)}

(r m(m1 x4, ..
G2 = W(m, 1)

[Spec—Callz]
(r m(71 x1, ... Tkxk) where A, P, T{e}) € P
G ={tr |6t ectuT (m, W(m,<1), ms) €
P, o, ¢ Djef-lez (61 : m(’Ul,. . ~1vk)) - mS(”lv s :'Uk)u [

8. Array Indirections

There is a class of programs which has been largely ignored in pas
work on array bound checks elimination. This class of programs
uses indexes that are stored in another ariagiirection array).

initdrr{a, s, i, j,n)

=(i>jANad'=a) V (0<i<j<sA (a’=aVn<d <n+j—i))

9. Implementation

We have constructed the proposed modular inference system to-
gether with a program specializer. Our implementation includes a
pre-processing phase to convert a C-like input progratwto The
output from our system was validated by a separate checking sys-
tem that we have also built. The entire prototype system was writ-
ten in Haskell and compiled using Glasgow Haskell compiler[32].
For constraint solving in the Presburger arithmetic domain, we used
the Omega library [35]. A web-demo of our system can be found at
thttp://loris-7.ddns.comp.nus.edu.sgdpeeaco/imp/.

We evaluated our prototype using small programs with chal-
lenging recursion and two numerical-intensive benchmarks: Sci-

Array indirections are used intensively for implementing sparse Mark (Fast Fourier Transform, LU decomposition, Successive
matrix operations. For such matrices, only nonzero elements areover-Relaxation) [31] and Linpack [13]. Our test platform was a
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Benchmark Program$ Source| Static | Checking Inference (secs) Static Checks

(lines) | Checks| (secs) | Weak Selective Strong Eliminated
binary search 31 2 0.17 1.84 1.81 1.79 100%
bubble sort 39 12 0.43 1.55 151 1.47 100%

foo 12 4 0.39 0.66 0.67 0.87| 50%/75%
hanoi tower 38 16 3.73 11.74 11.53  11.47 100%
merge sort 58 24 7.70 11.21 16.01 13.07 100%
queens 39 8 0.52 2.13 2.11 2.10 100%
quick sort 43 20 0.38 1.92 1.92 1.76 100%
sentinel 26 4 0.05 0.18 0.16 0.15 75%
sparse multiply 46 12 3.27 22.61 17.37 7.09 100%
sumvec 33 2 0.11 0.51 0.48 0.47 100%
FFT 336 62 9.58 * 58.02 28.74 100%
LU Decomp. 191 82 13.10 137.1 93.31 72.91 100%
SOR 84 32 1.15 7.18 4.67 3.8 100%
Linpack 903 166 42.26 * 360.1 162.2 100%

Figure 6. Statistics for Array Bound Checks Elimination

Pentium 2.8 GHz system with 1GBytes main memory, running Red does not scale up as inference fails to complete in reasonable time
Hat Linux 9.0. (cases denoted by * signify over an hour inference time).

Our main objective was to show the viability and the precision To summarize our experiences, we observe that our initial goal
of the system. Figure 6 summarises the statistics obtained for eachwas to build a precise inference system and make it practical by
program that we inferred. To quantify the analysis complexity of employing a modular analysis that computes method summaries.
the benchmark programs, we counted the program size (column 2)However, the small number of size variables at each method bound-
and also the number of static checks present in each program (col-ary was not enough to ensure the efficiency of our system. The
umn 3). The time taken for inference (columns 5-7) includes pars- backward component of our system proved to be expensive mostly
ing, preprocessing, modular type inference and specialization. Fordue to two reasons. Firstly, precondition derivation was done via
comparison, we present the time taken for checking pre-annotatednegation of a (possibly very large) program state formula. Sec-
programs (column 4), composed from parsing and dependent typeondly, array bound checks were specialized by deriving individual
checking. The size of the method constraints (preconditions, post- preconditions, one for each check. This was our intention in or-
conditions and recursive invariants) is on average around 15% of der to enable aggressive program optimization. Note that proving
the size of the source program. Thus, our inference eliminates theprogram safety does not necessarily require individual precondi-
effort to annotate methods required of programmers with access totion derivation (and, in our setting, can be less expensive). To cope
only a dependent type checker. with these additional difficulties, we employed additional approx-

Due to the precision of our inference system, we were able to imations to reduce the size of method summaries: weakening of
eliminate 100% of array checks for all the programs we tested, postconditions via selective hulling and strengthening of precon-
except forsentinel andfoo (column 8). Thesentinel example ditions via gisting. With these techniques, both the inference and
illustrates a pattern where some checks cannot be eliminated bythe specializer were integrated into a system that was shown to be
our method, since it makes use of a sentinel/guard against falling practical and precise enough for our purposes.
off one end of the array. Like [45, 43], we were unable to capture
the existential property that is required for check elimination. For
the foo example, strong prederivation and selective prederivation
eliminate 50% and 75%, respectively, of the static checks. 10. Soundness of Inference System

We can compare our experimental results to other analysesThe soundness of our type inference is defined with respect to
that are based on disjunctive domains similar to ours, but employ a type checking system and a specialization process. After type
only forward derivation [39, 33]. For the benchmark set used in inference (that includes fixed-point analysis), the inferred program
our previous work [33], a forward derivation and a fixed-point must bespecializedo include the runtime tests discovered during
analysis with Hausdorff affinity akin to [39] led to 76% check inference, before it becomes well-typed. We state the soundness of
elimination, while a forward analysis using planar affinity intro- our system below and refer the reader to the technical report [34]
duced in [33] was able to eliminate 84% of the checks. Compared for details on the proof.
to these two previous analyses, our current techniques achieve
100% check elimination. We can attribute this improvement to the )
combination of the forward derivation of postconditions with the THEOREM1 (Soundness)Let P be a program and a type infer-
backward derivation of preconditions. Another reason for our im- €nce judgement such th@e,, -; P~ Pr). Let (>pee Pr — Pr)
proved results was the handling of array indirections present in the be the specialization of; to P guided by the inferred runtime
sparse multiply andLinpack benchmarks. tests. TherPr is well-typed.

In almost all cases, strong prederivation takes less time than se-
lective prederivation, followed by weak prederivation. As an excep-
tion, the increased precision of weak prederivation allows a faster fer
analysis ofhergesort, since some bound checks are proved redun-
dant at an earlier point than the other two prederivation methods.
On the other hand, for those larger programs we found it crucial
to use either selective or strong prederivation; weak prederivation

As a special case, if no unsafe check is discovered during in-
ence therP; is well-typed. However, if unsafe checks are dis-
covered, the use of label sequences, (¢s.¢1.H) to identify array
checks also enablefebugging feedbaclSpecifically, our analysis

can pin-point the exact location of each unsafe check based on the
calling hierarchy up until an unsatisfied precondition.

9 2007/12/2



11. Related Works The idea of deriving preconditions for partially redundant
checks was first proposed in [8] to complement postcondition in-
ference on sized types [7] for a first-order functional language.
However, this early work was mostly informal and had no im-
plementation. We formalize this early idea by inferring a sound
dependent-type annotation for an imperative language, and inte-
grating its results with a program specializer. Moreover, we now
have a practical and precise implementation.

Unlike the work in [6] which uses a separate set-based analy-
sis for properties of elements in a collection, the current paper uses
@rithmetic constraints to represent such properties directly for indi-
rection arrays. This decision reduces the burden of using two differ-

the use of dependent types for array bound check elimination [43]. ent anglyses. On thg other hand,. the §et-based ana!ysis a}pproach [6]
may give more precise results via universal and existential proper-

Their approach is limited to totally redundant checks. Moreover, ties, and deal with elements which may not be integers
the onus for supplying suitable dependent types rests squarely on~~>: <"~ == AT ’
PpyIng P yp q Y Flexivariant specialization scheme enables a trade-off to be

the programmers, as only a type checker is available. A LG e
Precondition derivation with respect to a postcondition (or mad_e, that can give up some array check optimization for a re-
check) has been formulated via generatingMesification Con- ~ uction in code size. Such trade-off can be guided with the help
dition (VC) by Flanagaret al [16, 17]. Their focus was to ob- of_syltable path-profll!ng technlq_ues[42]. Such a compromise was
tain compact VCs whose size is worst-case quadratic to the size®Mginally pioneered in a technique, calleelective specializa-
of the source. However, they do not attempt to make precondi- tion[12], to convert expensive dynamic methoc_i dispatches _for .OO
programs into static counterparts, where possible. Our flexivariant

tions and postconditions argmaller through strengthening and h s th dint ith a family of ial
weakening, respectively. Furthermore, these VCs are for totally- scheme supports the proposed interence with a family of specializ-
rs, with selective specialization as a possible option.

redundant checks. In contrast, our technique stresses on modularit)fe
and deals with inter-procedural analysis over recursive methods, .
whereas they focus on intra-procedural analysis and loops. Re-12. Conclusion

cently, Flanagan [15] introduced the idea of inserting assertions \we have proposed a new inference mechanism for a dependent type
that cannot be proven during type checking as run-time checks. system with size relations. Our approach captures postcondition in
Our use of a flexivariant specializer to insert runtime checks (after the presence of imperative updates’ and derives Safety precondi_
inference) shares a similar flavour. However, our proposal is basedtions for each check encountered. Both the postcondition and safety
on inference, while his is formalised for a type-checker. precondition are propagated interprocedurally, though in opposite
~ldentifying redundant array bound checks can also be done us-directions. Recursive methods are also handled through a fix-point
ing abstract interpretation techniques over numerical domains. In a analysis on constraint abstraction derived via inference. The result-
seminal paper, Cousot and Halbwachs [11] introduced the polyhe- ing analysis is not only flow and context-sensitive, but is also path-
dra abstract domain and defined convex-hull and widening opera- sensitive. It can capture symbolic program states between local
tors for this domain. Subsequently, various other abstract domainsyariables, inputs and outputs. Initial experiences with a prototype
have been proposed, varying from conjunctive domains like oc- jmplementation suggest that such an advanced form of type infer-
tagons [28], pentagons [26] or symbolic ranges [38] to disjunctive ence is both precise and efficient. Just as the present analysis is em-
domains [39, 33]. In fact, safety analyzers that scale to large critical powered by the use of Presburger arithmetic, it is inevitably limited
programs like ASTRE [2] or C Global Surveyor [41] use elabo- by the linearity of expressible constraints. However, by first sub-
rate combinations of abstract domains to achieve maximum effi- jecting the original program to pre-processing such as partial eval-
ciency. For example, the static analyzer that has been described byuation (using constant propagation and loop unrolling), our analysis
Cousotet al[2, 10] succeeds in analyzing a program of 75 kloc with  can discover more linear constraints, and thus further improve its
no false alarm. It achieves this by varying the precision of arith- effectiveness.

metic abstract domains from interval domain to ellipsoid domain.

It also uses a decision tree abstract domain and trace partitioningACknOW|edgmem-S

for path-sensitivity. These relational domains operate on packs of _

variables for efficiency reasons. However, our analysis maintains This work was supported by NUS grant R252-000-213-112 and
path-sensitivity and the same level of precision over the entire pro- A*STAR grant R-252-000-233-305. It was also supported in part
gram by exploiting modularity. Being a summary-based approach, by Microsoft Research through its Ph.D. Scholarship program for
we have a bounded number of variables at method boundary and wethe second author. We thank Siau-Cheng Khoo for his profound and
further ensure that preconditions are kept small via suitable pred- sound advices. We also thank anonymous referees for their careful
erivation. Modularity has also been recognized as an important stepcomments.

for static program analyses to scale up to precise analysis of large

Traditionally, data-flow analysis techniques have been employed to
gather information for the purpose of identifying redundant array
checks [19]. Within the scope of intra-procedural analysis, these
techniques are also used to gather anticipatable information for the
purpose of hoisting partially-redundant checks to more profitable
locations. The technigues have gradually evolved in sophistication,
from the use of family of checks in [24], to the use of difference
constraints in [3].

To identify redundant checks more accurately, verification-
based methods have been used by Suzuki and Ishihata [40], Necul
and Lee [29] and Xt al [45]. Xi and Pfenning have advocated

programs [9] and our proposal is a solution in this direction. References
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