Core-Java: An Expression-Oriented Java

Florin Craciun

Hong Yaw Goh

Department of Computer Science, National University of Singapore
{craciunm,gohhy,corneliu,chinwn} @ comp.nus.edu.sg

Corneliu Popeea

Wei-Ngan Chin

Abstract

A common practice for rapid prototyping of an object-oriented pro-
gram analysis is to define a lightweight fragment of Java, that is
sufficiently small to facilitate a rigorous analysis of key properties.
Such a lightweight fragment lacks important Java features, thus the
experimental evaluation on real-world code is not easy. The solu-
tion is either to extend the prototype to the whole Java or to rewrite
the real-world code in the lightweight language. We propose an in-
termediate solution through Core-Java, an expression-oriented core
calculus of Java and a comprehensive set of translation rules from
Java to Core-Java. The translation can be guided by the specific re-
quirements of each program analysis. We have built an implemen-
tation of our framework and have used it for two different analyses
on Java programs.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Object-oriented languages

General Terms Design, Languages

Keywords language design, type-based analysis

1. Introduction

We propose a framework for rapid prototyping of various type-
based analyses for object oriented languages like Java. Java has a
lot of features, a large syntax with a complicated semantics. Our
framework consists of a minimal core calculus for Java, called
Core-Java and set of rules that permit a type-based source-to-
source transformation of Java programs into Core-Java programs.
Core-Java is designed in the same minimalist spirit as the pure
functional calculus, Featherweight Java [8], but it incorporates im-
perative features as Middleweight Java [1], and concurrent features
as the small multithreaded calculus, Concurrent Java [6]. In contrast
to the main motivations of these proposals, we are interested in a
more practical core calculus that incorporates all Java features [7]
and makes it easy to analyze and manipulate real-world Java pro-
grams. A good intermediate language for such a task should be
simple to analyse, close to source and able to handle real-world
code.

Our Core-Java language is more abstract than typical interme-
diate languages designed for compilation as these intermediate lan-
guages lose structural information about types, loops and other
high-level constructs.

Copyright is held by the author/owner(s).

OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

Core-Java is an expression-oriented language, that makes eas-
ier the formulation of static and dynamic semantics. Expression
languages are more suitable for type-based analyses that work on
an abstract syntax tree rather than on a control flow graph. Addi-
tionally, Core-Java language contains constructions that control the
program flow, as well as imperative and object-oriented features.

2. Core-Java Language

A program P (Figure 1) consists of a set of class and interface
declarations, def. The language supports simple inheritance by ex-
tending a class, but also multiple inheritance through the interface
mechanism.

P ::= package n (import n)” def"

def ::= mdf* class cq extends co implements c* {fld* meth*}
| mdf* interface cy extends c* {merh*}
T u=c | prim | void
fld ::= mdf" T f
meth ::= mdf" T mn ((T v)") throws c¢” eb
zu=v | k
wu=v | v.f | cf
eb = {(tv)" e}
ex=Fk | w | (null | eb | ()| w=e | er;ex | (7)v

| v.mn(xz®) | c.omn(z™) | newc(z™) | if x then ey else ea
| returnx | continue | break | whilex eb
| throwv | tryecatch (cveb)” | synchronizedv ine

¢ € class or interface names

mn € method names

prim € primitive types

mdf € modifiers (e.g. static, public, etc.)

v € variable names
f € field names

k € constants

n € package names

Figure 1. The Syntax of Core-Java

A class contains the declared fields and methods while an interface
contains only methods without body. A method declaration meth
consists of the method modifiers, its return type, method name,
its arguments with their types, its raised exceptions, and a block
expression for the method body. Core-Java uses by default pass-
by-value mechanism, but it also supports pass-by-reference mech-
anism used in languages like C#. A block expression eb of the form
{(7 v)*e} consists of a list of local variable declarations and a body
expression e. A block expression is evaluated to its body. The no-
tation w denotes a lvalue, a value that can appear on the left-hand
side of an assignment. A lvalue can be either a variable, v, or an ob-
ject field, v. f or a static field, c. f. Note that field access is restricted
to the simplest form, v.f. Java keywords this and super are treated
as special variable names in Core-Java. The notation z denotes ei-
ther a variable or a constant value and is used to restrict some ex-
pressions (e.g. method arguments, returned expression, etc). Core-
Java does not contain statements as it contains only expressions.
Expressions e include expression blocks, assignments, cast oper-

ations, method invocations, conditionals, control-flow primitives,
loops, exceptions, and concurrency primitives. The notation () de-
notes an empty expression and its type is void. An assignment eval-
uates to a void value, a sequence e ;e evaluates to the value of ex-
pression ez, and a loop also evaluates to void. A new c(z*) invokes
a default constructor of the c class. A constructor is a non-static
method having the same name as its class. Core-Java monomor-
phic type, T can be either a class type, or void or any Java primitive
type. Java array type is treated as a class. Core-Java does not have
operators on primitive types, instead it defines a special class, called
Primitives that contains a static method for each primitive operator.

3. Java to Core-Java Translation

We formulate the translation as a set of type-directed rules that
follow the syntax of the Java source language. The rules are type-
preserving, that is, they guarantee that both programs, the Java
input and the Core-Java output, have the same type. Our algorithm
consists of three main steps:

Generating Descriptors of Compilation Units. For each compi-
lation unit, we generate its attached descriptor file. A descriptor
consists of typing information of each interface, class and their
fields and methods, but without the method body. The descriptor
also contains the class type dependencies.

Computing the Global Dependency Graph. Our translation is re-
quired to process the class and interface declarations in some partic-
ular order given by the complex inter-dependency among classes,
interfaces and methods. The dependency graph has the class and
interface declarations organised into a hierarchy of strongly con-
nected components (SCCs). Through a bottom-up processing of
each SCC, we perform the translation in a systematic fashion. The
global dependency graph is also kept after the translation to be used
by the subsequent program analyses.

Translation. The type-based translation is formulated as a mod-
ular type inference for the Java input program. The type system
behind translation is similar with that formalised in [5]. The main
judgement has the following form: D, T" - ¢ =y, ¢’ : 7 denoting the
translation of a Java expression e into a Core-Java expression e’,
where e and e’ have the type 7 with respect to the type environ-
ment, I" and the set of descriptors, D. Details about our translation
rules can be found in the companion technical report [4].

4. Support for Program Analyses

The goal of designing Core-Java language was to help the pro-
gram analyses on the Java-like languages, especially those analy-
ses which are type-based and modular. Core-Java in essence is an
expression-oriented language, that makes easier the formulation of
static and dynamic semantics. Expression languages are more suit-
able for type-based analyses that work on an abstract syntax tree
rather than on a control flow graph.

However, the syntax of Core-Java contains some constructions
that control the program flow. These constructions can be classified
in the following categories: (1) intra-method flow: that is not altered
by exceptions or by return, but it can be controlled by the while
loop, if..then..else, break (forward jump) and continue (back-
ward jump); (2) return flow: that is given by the return; and (3) ex-
ceptional flow: controlled by throws and try..catch. To manage the
different categories of flow, we use a tuple of types, (intra-method
type, return type, exceptional type) similar with [5] to represent the
type of an expression: I' + e : tn#tr#taq, p, Where t,, is the intra-
method type that characterizes normal execution of the expression,
t, is the return type, denoting the type of a possible return expres-
sion from e, and t, is the exceptional type that characterizes the
exceptional execution of e.

A flow-insensitive analysis is not affected by while loop, break
and continue. Flow-insensitive results can be composed in any or-

640

der. On the other hand, for the flow-sensitive analyses the program
flow is important and the constructions that alter it complicate the
formulation of such analyses. Therefore, we further translate Core-
Java: while loops are converted to equivalent tail-recursive meth-
ods. To mimic the effects of loops, such converted methods differ
from user-defined methods in that they use pass-by-reference pa-
rameters instead of pass-by-value ones. This conversion is for anal-
ysis purposes only; the while form is still used for execution.

Core-Java was designed to support annotations to represent ei-
ther the output of a program analysis (e.g. the region annotations
produced by the region inference [3]) or the translation of a Java
program with type based annotations (e.g. region annotations given
by the programmer as input for the region typechecker [3]). In gen-
eral, the analyses use three kinds of annotations: annotations of the
normal Java types, invariants for the class declarations, and pre/post
conditions attached to the method declarations. All these annota-
tions are specific to each type-based program analysis. In order to
support a specific analysis, the translator has to be specialised to
work with the new annotated types instead of the normal Java types.
We experimented the passing of type annotations through translator
in [2], where a Java program was annotated with variant paramet-
ric types. Core-Java methods were extended to parametric methods
that contain type variables as arguments.

5. Conclusion and Future Work

We have implemented the translator in Haskell and we used it to
help two analyses: a region inference for Java [3] and a typechecker
of a variant parametric type system for Java [2]. The translator was
very useful in extending the experiments of our projects to real-
world applications.

Our goal is to have an integrated framework: translator, global
dependency graph and any other specific data structure that can
help and simplify the program analyses. Another aspect is the
correctness of the translation rules. We experimentally validated
that translated programs are correct and currently we are working
on a formal proof of the translation rules.

Acknowledgements

This work is supported by AStar* research grant R-252-000-233-
305.

References

[1] Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: An
imperative core calculus for Java and Java with effects. Technical
report, Cambridge University, 2003.

[2] Wei-Ngan Chin, Florin Craciun, Siau-Cheng Khoo, and Corneliu
Popeea. A Flow-Based Approach for Variant Parametric Types. In
ACM OOPSLA, Portland, 2006.

[3] Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard.
Region Inference for an Object-Oriented Language. In ACM PLDI,
Washington, 2004.

[4] Florin Craciun, Hong Yaw Goh, and Wei-Ngan Chin. A Frame-
work for Object-Oriented Program Analyses via Core-Java. Tech-
nical report, National University of Singapore, 2006. avail. at
(http://www.comp.nus.edu.sg/™ chinwn/papers/corejava.ps).

[5] Sophia Drossopoulou, Tanya Valkevych, and Susan Eisenbach. Java
type soundness revisited. Tech report, Imperial College, 1999.

[6] Cormac Flanagan and Stephen N. Freund. Type-based race detection
for Java. In ACM PLDI. ACM Press, 2000.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, Third Edition. Addison-Wesley, 2005.

[8] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal
Core Calculus for Java and GJ. In ACM OOPSLA, Denver, 1999.

