
Inferring Disjunctive Postconditions

Corneliu Popeea and Wei-Ngan Chin

Department of Computer Science, National University of Singapore
{corneliu,chinwn}@comp.nus.edu.sg

Abstract. Polyhedral analysis [9] is an abstract interpretation used for
automatic discovery of invariant linear inequalities among numerical vari-
ables of a program. Convexity of this abstract domain allows efficient
analysis but also loses precision via convex-hull and widening operators.
To selectively recover the loss of precision, sets of polyhedra (disjunctive
elements) may be used to capture more precise invariants. However a
balance must be struck between precision and cost.
We introduce the notion of affinity to characterize how closely related is
a pair of polyhedra. Finding related elements in the polyhedron (base)
domain allows the formulation of precise hull and widening operators
lifted to the disjunctive (powerset extension of the) polyhedron domain.
We have implemented a modular static analyzer based on the disjunc-
tive polyhedral analysis where the relational domain and the proposed
operators can progressively enhance precision at a reasonable cost.

1 Introduction

Abstract interpretation [7, 8] is a technique for approximating a basic analysis,
with a refined analysis that sacrifices precision for speed. Abstract interpretation
relates the two analyses using a Galois connection between the two corresponding
property lattices. The framework of abstract interpretation has been used to
automatically discover program invariants. For example, numerical invariants
can be discovered by using numerical abstract domains like the interval domain
[6] or the polyhedron domain [9]. Such convex domains are efficient and their
elements represent conjunctions of linear inequality constraints.

Abstract domains can be designed incrementally based on other abstract do-
mains. The powerset extension of an abstract domain [8, 12] refines the abstract
domain by adding elements that allow disjunctions to be represented precisely.
Unfortunately, analyses using powerset domains can be exponentially more ex-
pensive compared to analyses on the base domain. One well-known approach
to control the number of disjuncts during analysis is to use a powerset domain
where the number of disjuncts is syntactically bounded. In this setting, the chal-
lenge is to find appropriate disjuncts that can be merged without (evident) losses
in precision. Recently, a technique for disjunctive static analysis has been pro-
posed and implemented [24]. The analysis is formulated for a generic numerical
domain and an heuristic function based on the Hausdorff distance is used to
merge related disjuncts. Besides combining related disjuncts, another difficulty

in designing a disjunctive abstract domain is to define a precise and convergent
widening operator.

In this paper, we develop a novel technique for selective hulling to obtain
precise fixed points via disjunctive inference. Our framework uses a fixed point
algorithm guided by an affinity measure to find and combine disjuncts that are
related. We also develop a precise widening operator on the powerset domain
by using a similar affinity measure. We have built a prototype system to show
the utility of the inferred postconditions and the potential for tradeoff between
precision and analysis cost.

This paper is organized as follows: an overview of our method with a running
example is presented in Sect. 2. Section 3 introduces our source language and a
set of reasoning rules that collect a (possibly recursive) constraint abstraction
from each method/loop to be analyzed. Those recursive constraint abstractions
are subjected to the disjunctive fixed point analysis based on selective hulling
and widening as described in Sect. 4. Our implementation and experimental
results are presented in Sect. 5. Section 6 presents related work, while Sect. 7
concludes.

2 Overview

To provide an overview of our method, we will consider the following example.

x:=0;upd:=False;
while (x < N) do {

if (randBool()) then {
l:=x;upd:=True

} else { () };
x:=x+1 }

This program computes the index l of a spe-
cific element in an array of size N . The array
contents has been abstracted out and only the
updates to the index variables l and x have
been retained. The call to the method randBool

abstracts whether the current element indexed
by x is found to satisfy the search criterion.
Whenever the criterion is satisfied, the index
variable l is updated, as well as the boolean
flag upd. An assertion at the end of the loop could check that, whenever an
element has been found (upd=true), its index l is a valid index of the array
(0≤l<N). The aim of our static analysis is to infer disjunctive invariants that
can help prove such properties.

A static analysis can be formulated as a state-based analysis: guided by the
program state at the beginning of the loop, it computes the loop postcondition
as a program state approximation [9, 13, 24]. As an alternative, our method is
related to trace-based analysis [4] and computes the loop summary as a transition
from the prestate (before the loop) to the poststate (after the loop body).

Our analysis is formulated in two stages. Firstly, it collects a constraint ab-
straction from the method/loop body to be analyzed. This abstraction can be
viewed as an intermediate form and is related to the constraint abstraction in-
troduced in [14]. As a second step, an iterating process will find the fixed point
for the constraint abstraction function.

For the running example, the constraint abstraction named wh represents the
input-output relation between the loop prestate (in terms of X, the unprimed

variables x, N, l, upd) and the loop poststate (in terms of X ′, the primed variables
x′, N ′, l′, upd′).

wh(X, X ′) :− ((nochange(X) ∧ x′<N ′)◦{l,upd}
(l′=x ∧ upd′=1 ∨ nochange(l, upd))◦{x}
(x′=x+1)◦Xwh(X, X ′))

∨ (nochange(X) ∧ x′≥N ′)

The nochange operator is a special transition where original and primed variables
are made equal: nochange({}) =df true; nochange({x}∪X) =df (x′=x)∧nochange(X).
The composition operator (φ1◦W φ2) is left-associative and composes the input-
output relations φ1 and φ2 updating W variables as specified by φ2 formula.
Formally, given φ1, φ2, and the set of variables to be updated X={x1, . . . , xn},
the composition operator ◦X is defined as:

φ1 ◦X φ2 =df ∃ r1..rn · ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables; ρ1 = [x′i 7→ ri]
n
i=1

; ρ2 = [xi 7→ ri]
n
i=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′i in φ1 with
the corresponding initial value xi in φ2 via a fresh variable ri.

With these two operators, the effects of the loop sub-expressions are com-
posed to obtain the effect of the entire loop body. The 1st line of the constraint
abstraction corresponds to the loop test that is satisfied. The 2nd line stands for
the body of the conditional expression from the loop. Note that the boolean con-
stants False and True are modeled as integers 0 and 1. The 3rd line represents
the assignment that increments x by 1 composed with the effect of subsequent
loop iterations (the occurrence of the wh constraint abstraction). The 4th and
last line stands for the possibility that the loop test is not satisfied.

After some simplifications, the constraint abstraction reduces to:

wh(X, X ′) :−∃X1·((x1=x+1 ∧N1=N ∧ l1=x ∧ upd1=1 ∧ wh(X1, X
′))

∨ (x1=x+1 ∧N1=N ∧ l1=l ∧ upd1=upd ∧ wh(X1, X
′))

∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′))

where X1 denotes the local variables (x1, N1, l1, upd1).
The analysis goal is then to compute a fixed point approximation for the

constraint abstraction function. This function takes as argument a transition
depending on X, X ′ and its result is also expressed as a transition dependent on
the same variables. Both transitions can either be approximated by polyhedra
or, more precisely, by sets of polyhedra. The first case is akin to the polyhedral
analysis from [9] and is reviewed next. For the second case, we will use our
running example to show how to compute a disjunctive loop postcondition.

2.1 Computing Fixed Points in the Polyhedron Abstract Domain

We briefly review the method based on Kleene’s fixed point iteration applied to
the polyhedron abstract domain. Let (L,≤) be a complete lattice, and denote
by (P,⇒) the lattice of polyhedra. We write ⊥ for its least element (in P,

the empty polyhedron or its representation, the formula false), and > for its
greatest element (in P, the entire n-dimensional space or its representation, the
formula true). The meet and join operations in the lattice of polyhedra are,
respectively, the set intersection and the convex polyhedral hull, the latter being
denoted by ⊕. A function f that is a self-map of a complete lattice is monotone
if x ≤ y implies f(x) ≤ f(y). In particular, the constraint abstraction functions
derived by our analysis are monotone self-maps of the (powerset) polyhedra
lattice.

The least fixed point of a monotone function f can be obtained by computing
the ascending chain f0 = ⊥, fn+1 = f(fn), with n≥0. If the chain becomes
stationary, i.e., if fm = fm+1 for some m, then fm is the least fixed point
of f . In the case of a lattice infinite in height (as the lattice of polyhedra),
an ascending chain may be infinite, and a widening operator must be used to
ensure convergence. A widening operator ∇ is a binary operator to ensure that
the iteration sequence f0 = ⊥, fk+1 = f(fk) followed by fn+1 = fn∇f(fn), with
n > k, converges. In this case, the limit of the sequence is known as a post fixed
point of f . A post fixed point is a sound approximation of the least fixed point,
and the criterion to verify that x is a post fixed point for f is that x ≥ f(x).
For the polyhedron domain, the standard widening operator was introduced in
[9]. Intuitively, the result of the widening φ1∇φ2 is obtained by removing from
φ1 those conjuncts that are not satisfied by the next iteration φ2.

For our running example, the fixed point iteration starts with the least ele-
ment of the abstract domain represented by the false formula. The first approx-
imation wh1 is a transition formula that considers that the loop test fails and
the loop body is never executed:

wh1 :− (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

The next iteration is a three-disjunct formula that cannot be represented in
the polyhedron domain. An approximation for the disjunctive formula is com-
puted using the convex hull operator. A disjunctive formula can be viewed as a
set of disjuncts: φ = ∨n

i=1di = {di}n
i=1. Operators on these disjuncts could be used

either infixed or prefixed. For example, given φ=d1∨d2 then ⊕φ = ⊕{d1, d2} = d1⊕d2.

wh2 :− (x′=x+1 ∧N ′=N ∧ l′=x ∧ upd′=1 ∧ x′≥N ′)
∨ (x′=x+1 ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)
∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x′≥N ′)

wh′2 :− ⊕wh2 = (x≤x′≤x+1 ∧N ′=N ∧ x′≥N)
wh′3 :− ⊕wh3 = (x≤x′≤x+2 ∧N ′=N ∧ x′≥N)

The iterating sequence will not converge since the inequality x′≤x will be trans-
lated at the following iterations into x′≤x+1, x′≤x+2 and so on. Convergence is
ensured by the widening operator which simplifies as follows:

wh′′3 :−wh′2∇wh′3 = (x≤x′ ∧N ′=N ∧ x′≥N)

This result proves to be a post fixed point for the wh function. However, the
result is rather imprecise as it does not capture any information about the value
of l or the flag upd at the end of the loop. Intuitively, such information was

present in wh2 and wh3, but approximated by the convex hull operator to obtain
wh′2 and wh′3. Next, we outline a method to compute disjunctive fixed points
able to capture this kind of information.

2.2 Computing Fixed Points in a Disjunctive Abstract Domain

The two ingredients that we use to compute disjunctive fixed points are counter-
parts to the convex hull and widening operators from the conjunctive case. Both
operators ensure a bound on the number of disjuncts allowed in the formulae.

We first propose a selective hull operator ⊕m parameterized by a constant
m that takes as argument a disjunctive formula and collapses these disjuncts
into a result with at most m disjuncts. The crux of this operator is an affinity
measure to choose the two most related (affine) disjuncts from a disjunctive
formula. Formally, given φ = ∨n

i=1di, and let di,dj be the most related disjuncts
as determined by their affinity, we define the selective hull operator as follows:

⊕mφ =df if n≤m then φ
else ⊕m (φ \{di, dj} ∪ {di ⊕ dj})

Note that the convex hull operator from the polyhedron domain ⊕ is equivalent
to ⊕1 since it reduces its disjunctive argument to a conjunctive formula with one
disjunct. The affinity function aims to quantify how close is the approximation
d1⊕d2 from the disjunctive formula d1∨d2. Intuitively, it works by counting the
number of inequalities (planes in the n-dimensional space) from the disjunctive
formula that are preserved in the approximation d1⊕d2. Since it counts the
number of inequalities (relations between variables), the affinity function is able
to handle the relational information captured by the formulae in the polyhedron
domain.

As an example, consider wh2 and wh3 obtained previously. The results of
selective hull with m=3 the bound on the number of disjuncts are as follows:

wh′′′2 :− ⊕3 wh2 = wh2

wh′′′3 :− ⊕3 wh3 = (x≤x′≤x+2 ∧N ′=N ∧ x≤l′≤x+2 ∧ upd′=1 ∧ x+2≥N)
∨ (x≤x′≤x+2 ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x+2≥N)
∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x≥N)

The second operator needed in the disjunctive abstract domain is a widen-
ing operator. We propose a similar affinity measure to find related disjuncts
for pairwise widening. For the two disjunctive formulae wh′′′2 = (d1∨d2∨d3) and
wh′′′3 = (e1∨e2∨e3), the most affine pairs will distribute the widening operator:

wh′′′2 ∇3wh′′′3 :− (d1∨d2∨d3)∇3(e1∨e2∨e3) = (d1∇e1) ∨ (d2∇e3) ∨ (d3∇e3)
= (x′=N ∧N ′=N ∧ x≤l′≤N ∧ upd′=1)
∨ (x′=N ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x≤N)
∨ (x′=x ∧N ′=N ∧ l′=l ∧ upd′=upd ∧ x>N)

This result proves to be a post fixed point for the wh function in the powerset
domain. The first disjunct captures the updates to the variable l, thus l′ can
safely be used as an index for the array of size N . The last two disjuncts cap-
ture the cases where, either the loop was executed but the then branch of the

conditional has never been taken (x≤N ∧ upd′=upd), or the loop has not been
executed (x>N).

Note that our disjunctive fixed point computation works not only for loops,
but also for general recursion. Our analysis also supports mutual recursion where
fixed points are computed simultaneously for multiple constraint abstraction
functions.

Since the computed fixed point represents a transition, the analysis does not
rely on a fixed initial state and can be implemented in a modular fashion. While
modular analysis may expose more disjuncts (because no information is assumed
about the initial state) and benefits more from our approach, disjunctive analysis
has been shown to be also useful for global static analyses [13, 24].

3 Forward Reasoning Rules

We propose a set of forward reasoning rules for collecting a constraint abstraction
for each method/loop. Some primitive methods may lack a method body and be
given instead a formula φ: the given formula may include a safety precondition
(for example, bound checks for array operations), or simply represent the input-
output relation (for primitive numerical operations like add or multiply). The
reasoning process is modular, starting with the methods at the bottom of the
call graph.

P ::= meth∗

meth ::= t mn (([ref] t v)∗) where φ {e}
t ::= bool | int | void
k ::= true | false | kint | ()
e ::= v | k | v:=e | e1; e2 | mn(v∗) | t v ; e

| if v then e1 else e2 | while v do e
φ ::= s1=s2 | s1≤s2 | φ1∧φ2 | φ1∨φ2 | ∃v·φ
s ::= kint | v | v′ | kint ∗ s | s1 + s2

Fig. 1. Simple imperative language

For simplicity, we shall
use an imperative language
with minimal features, as
given in Fig. 1. We use meth
for method declaration, t for
type, and e for expression.
This language is expression-
oriented and uses a nor-
malised form for which only
variables are allowed as argu-
ments to a method call or a
conditional test. A preproces-
sor can transform arbitrarily
nested arguments to this core language form. Pass-by-reference parameters are
declared for each method via the ref keyword, while the other parameters from
{v∗} are passed-by-value. For simplicity, we disallow aliasing amongst pass-by-
reference parameters. This restriction is easily enforced in our simple language
by ensuring that such arguments at each call site are distinct variables.

The constraint language defined by φ is based on Presburger arithmetic. Our
framework can accommodate either a richer sublanguage for better expressivity
or a more restricted sublanguage (e.g. weakly relational difference constraints
[20]) for better performance. We shall assume that a type-checker exists to ensure
that expressions and constraints used in a program are well-typed.

The rule [METH] associates each method mn with a constraint abstraction of
the same name. Namely, mn(v∗, w∗) :−φ, where v∗ covers the input parameters,

[CONST]

φ1 = (φ∧res=k)

` {φ} k {φ1}

[VAR]

φ1 = (φ∧res=v′)

` {φ} v {φ1}

[ASSIGN]

` {φ} e {φ1} φ2 = ∃res·(φ1◦{v}v
′=res)

` {φ} v:=e {φ2}

[BLK]

` {φ} e {φ1}
` {φ} t v; e {∃v′·φ1}

[IF]

` {φ∧v′=1} e1 {φ1}
` {φ∧v′=0} e2 {φ2}

` {φ} if v then e1 else e2 {φ1∨φ2}

[SEQ]

` {φ} e1 {φ1}
` {∃res·φ1} e2 {φ2}
` {φ} e1; e2 {φ2}

[CALL]

W={vi}m−1
i=1 distinct(W)

t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m)

where φpo {...}
` {φ}mn(v1..vn) {φ ◦W φpo}

[WHILE]

X=freevars(v, e) ` {nochange(X)∧v′=1} e {φ1}
φ2=(φ1◦Xwh(X, X ′)) ∨ (nochange(X)∧v′=0)

Q={wh(X, X ′) :−φ2} φpo = fix(Q)

` {φ} while v do e {φ◦Xφpo} ⇒ φpo

Fig. 2. Forward reasoning rules

while w∗ covers the method’s output res and the primed variables from pass-by-
reference parameters. The fixed point analysis outlined in the previous section
is invoked by fix(Q) and returns φpo, the input-output relation of the method.
To derive suitable postconditions, we shall subject each method declaration to
the following rule:

[METH]

W={vi}n
i=1 V ={v′i}n

i=m ` {nochange(W)} e {φ}
X={v1, .., vn, res, v′1, .., v

′
m−1} Q={mn(X) :− ∃V ·φ} φpo = fix(Q)

` t0 mn((ref ti vi)
m−1
i=1 , (ti vi)n

i=m) where mn(X){e} ⇒ φpo

The inference uses a set of Hoare-style forward reasoning rules of the form
` {φ1} e {φ2}. Given a transition φ1 from the beginning of the current method/loop
to the prestate before e’s evaluation, the judgement will derive φ2, a transition
from the beginning of the current method/loop to the poststate after e’s evalu-
ation. A special variable res is used to denote the result of method declaration
as well as that of the current expression under program analysis.

In Fig. 2, the [ASSIGN] rule captures imperative updates with the help of
the prime notation. The [SEQ] rule captures flow-sensitivity, while the [IF] rule
captures path-sensitivity. The [CALL] rule accumulates the effect of the callee
postcondition using φ ◦W φpo. This rule postpones the checking of the callee
precondition to a later stage. The two rules [METH] and [WHILE] compute a
postcondition (indicated to the right of the ⇒ operator) which will be inserted
in the code and used subsequently in the verification rules. The result of these
rules is a definition for each constraint abstraction. As an example, consider:

void mnA(ref int x, int n) where (mnA(x, n, x′))
{ if x>n then x:=x−1; mnA(x, n) else () }

After applying the forward reasoning rules, we obtain the following constraint
abstraction:

mnA(x, n, x′) :− (x>n∧(∃x1·x1=x−1∧mnA(x1, n, x′)))∨(x≤n∧x′=x)
Note that the forward rules can be used to capture the postcondition of any

recursive method, not just for tail-recursive loops. For example, consider the
following recursive method:

int mnB(int x) where (mnB(x, res)) { if x≤0 then 1 else x:=x−1; 2+mnB(x) }
Applying forward reasoning rules will yield the following constraint abstraction:
mnB(x, res) :− (x≤0∧res=1)∨(x>0∧(∃x1, r1·x1=x−1∧mnB(x1, r1)∧res=2+r1))

The next step is to apply fixed point analysis on each recursive constraint
abstraction. By applying disjunctive fixed point analysis, we can obtain:

mnB(x, res) :− (x≤0∧res=1)∨(x≥0∧res=2∗x+1)

Once a closed-form formula has been derived, we shall return to checking the
validity of preconditions that were previously skipped. The rules for verifying
preconditions are similar to the forward rules for postcondition inference, with
the exception of three rules, namely:

[VERIFY−CALL]

t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m) where φpo

W={vi}m−1
i=1 Z={res, v′1, .., v′m−1}

φpr=∃Z·φpo φ =⇒ [vi 7→v′i]
n
i=1φpr

` {φ}mn(v1..vn) {φ ◦W φpo}

[VERIFY−WHILE]

X = freevars(v, e) ρ = X 7→X ′

φpr = ∃X ′·φ2 φ =⇒ ρφpr

` {φ∧ρφpr} e {φ′}
` {φ} while v do e where φ2 {φ ◦X φ2}

[VERIFY−METH]

W={vi}n
i=1 Z={res, v′1, .., v′m−1}

φpr=∃Z·φpo ` {φpr∧nochange(W)} e {φ}
` t0 mn((ref ti vi)

m−1
i=1 , (ti vi)n

i=m) where φpo {e}

The [VERIFY−CALL] rule checks that the precondition of each method call
can be verified as statically safe by the current program state. If it cannot be
proven statically safe, a run-time test will be inserted prior to the call site to
guarantee the safety of the precondition during program execution. The precon-
dition derived for recursive methods is meant to be also satisfied recursively. The
[VERIFY−METH] rule ensures that each of its callees is either statically safe or
has a runtime test inserted. The [VERIFY−WHILE] rule uses X to denote the free
variables appearing in the loop body; the substitution ρ maps the unprimed to
primed variables. This rule uses the loop formula φ2 to compute a precondition
φpr necessary for the correct execution of the loop body. The precondition is
checked for satisfiability using φ, the state at the beginning of the loop. We refer
to this new set of rules as forward verification rules. We define a special class of
totally-safe programs, as follows:

Definition 1 (Totally-Safe Program). A method is said to be totally-safe
if the precondition derived from all calls in its method’s body can be verified as
statically safe. A program is totally-safe if all its methods are totally-safe.

For each totally-safe program, we can guarantee that it never encounters any
runtime error due to unsatisfied preconditions.

4 Computing Disjunctive Fixed Points

Classical fixed point analysis technique in the polyhedron domain [9] attempts
to obtain a conjunctive formula result with the help of convex-hull and widening
operators. A challenge for disjunctive fixed point inference is to apply selective
hulling on closely related disjuncts whenever needed.

In this paper, we propose a qualitative measure called affinity to determine
the suitability of two formulae for hulling. In order to obtain the affinity between
two terms φ1 and φ2, we have to compute two main expressions (i) φhull = φ1⊕φ2

and (ii) φdiff = φhull∧¬(φ1∨φ2). Furthermore, we also require a heuristic function
heur that indicates how closely related is the approximation φ1⊕φ2 from the
original formula φ1∨φ2. With this, we can formally define the affinity measure
using:

Definition 2 (Affinity Measure). Given a function heur that returns a value
in the range 1..99, the affinity measure can be defined as:

affin(φ1, φ2) =df if φdiff=false then 100
else if φhull=true then 0
else heur(φ1, φ2)

The precise extreme (100) indicates that the convex-hull operation is ex-
act without any loss of precision. The imprecise extreme (0) indicates that the
convex-hull operation is inexact and yields the weakest possible formula true.
In between these two extremes, we will use an affinity measure to indicate the
closeness of the two terms by returning a value in the range 1..99.

Selective Hull based on Planar Affinity. The planar affinity measure com-
putes the fraction of planes from the geometrical representation of the original
formula that are preserved in the hulled approximation:

Definition 3 (Planar Affinity Measure). Given two disjuncts φ1, φ2 and
the convex-hull approximation φhull = φ1⊕φ2, we first define the set of conjuncts
mset={c∈(φ1∪φ2) | φhull =⇒ c}. The planar affinity measure is shown below:

p-heur(φ1, φ2)=df (|mset|/|φ1∪φ2| ∗ 98) + 1

The denominator |φ1∪φ2| represents the number of planes corresponding to the
original formulae (from both polyhedra φ1 and φ2). Some of these planes are
approximated by the hulling process, while others are preserved in the approx-
imation φhull. The number of preserved planes is represented by the cardinality
of mset and indicates the suitability of the two disjuncts for hulling.

As an example, consider the following disjunctive formula:
φ = (x≤0 ∧ x′=x) ∨ (x=1 ∧ x′=0) ∨ (x=2 ∧ x′=0)

Firstly, the three disjuncts (denoted respectively by d1, d2 and d3) are converted
to a minimal form. As with other operators on polyhedra (e.g. the standard
widening operator from [15]), the minimal form requires that no redundant con-
juncts are present and, furthermore, each equality constraint is broken into two

corresponding inequalities as follows:

d1 = (x≤0 ∧ x′≥x ∧ x′≤x)
d2 = (x≥1 ∧ x≤1 ∧ x′≥0 ∧ x′≤0)
d3 = (x≥2 ∧ x≤2 ∧ x′≥0 ∧ x′≤0)

We compute three affinity values, one for each pair of disjuncts from φ. Note
that the cardinality of the set of conjuncts (φ1∪φ2) is considered after removing
duplicate conjuncts that appear both in φ1 and φ2.

d1 ⊕ d2 = (x′≤x ∧ x′≤0 ∧ x′≤x−1) mset(d1, d2) = {x′≤x, x≤1, x′≤0}
p-heur(d1, d2) = 3/7 ∗ 98 + 1 = 43

d1 ⊕ d3 = (x′≤x ∧ x′≤0 ∧ x′≤x−2) mset(d1, d3) = {x′≤x, x≤2, x′≤0}
p-heur(d1, d3) = 3/7 ∗ 98 + 1 = 43

d2 ⊕ d3 = (x≥1 ∧ x≤2 ∧ x′≤0 ∧ x′≤0) mset(d2, d3) = {x≥1, x≤2, x′≤0, x′≤0}
p-heur(d2, d3) = 4/6 ∗ 98 + 1 = 66

Based on these affinities, the most related pair of disjuncts is {d2, d3}. The result
for selective hull of φ will therefore capture a precise relation between x and x′:

⊕2φ = ⊕2{d1, d2⊕d3} = (x≤0 ∧ x′=x) ∨ (x≥1 ∧ x≤2 ∧ x′=0)

Selective Hull based on Hausdorff distance. Related to our affinity mea-
sure, Sankaranarayanan et al [24] have recently introduced a heuristic function
that uses the Hausdorff distance to measure the distance between the geometrical
representations of two disjuncts.

The Hausdorff distance is a commonly used measure of distance between two
sets. Given two polyhedra, P and Q, their Hausdorff distance can be defined as:
h-heur(P, Q)=dfmaxx∈P {miny∈Q{d(x, y)}} where d(x, y) is the Euclidian distance
between two points x and y. This heuristic was deemed as hard to compute in
[24] and, as an alternative, a range-based Hausdorff heuristic was used.

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

F2 F3 F4F1

Fig. 3. Pairs of disjuncts with similar Hausdorff distance

Because it reduces the information about variables to non-relational ranges,
we can argue that a range-based heuristic is less suitable for a relational ab-
stract domain like the polyhedron domain. Furthermore, we present an intuitive
argument why such a distance based heuristic is less appropriate. The pairs of
disjuncts {F1,F2} and {F3,F4} from Fig. 3 may have similar h-heur values; on the
other hand, the affinity based on p-heur precisely indicates that the second pair
{F3,F4} is more suited for hulling. In the Sect. 5, we compare these two heuristic
functions when inferring postconditions for a suite of benchmark programs.

4.1 Powerset Widening Operator

The standard widening operator for the convex polyhedron domain was intro-
duced in [9]. For disjunctive fixed point inference, a (powerset) widening operator
for sets of polyhedra is required. Given two disjunctive formulae φ1 and φ2, the
challenge is to find pairs of related disjuncts {di, ei} (di∈φ1, ei∈φ2) such that the
result of widening di wrt ei is as precise as possible.

For this purpose, Bagnara et al [1] introduced a framework to lift a widening
operator over a base domain to a widening operator over its powerset domain.
The strategy used by the powerset widening based on a connector starts by
joining (connecting) elements in φ2 to ensure that each such connected element
approximates some element from φ1. Secondly, it chooses related pairs {di, ei}
based on the logical implication relation, where di ⇒ ei. Mostly concerned with
convergence guarantees for widening operators, the framework from [1] does
not give a recipe for defining connector operators able to find related disjuncts.
Later, the generic widening operator definition was instantiated for disjunctive
polyhedral analysis by Gulavani et al in [13]. However, their proposal uses a
connector operator that relies on the ability to find one minimal element from
a set of polyhedra. In general, the most precise result cannot be guaranteed by
a deterministic algorithm, since the polyhedron domain is partially ordered. To
overcome this problem, we propose an affinity measure to find related disjuncts
for pairwise widening.

The strategy that we adopt for widening is to choose related pairs {di, ei}
based on their affinity. After pairwise widening, we subject the result to a se-
lective hull operation provided it contains more disjuncts than φ1. In general,
there may be more disjuncts in φ2 than in φ1. A reason for non-convergence of
the powerset widening operator is that some element from φ2 is not involved
in any widening computation and included unchanged in the result. Our opera-
tor (similar to the connector-based widening) distributes each disjunct from the
arguments φ1 and φ2 in a widening computation and thus ensures convergence.

Formally, given two disjunctive formulae φ1=
∨m

i=1 di and φ2=
∨n

i=1 ei, we de-
fine a powerset widening operator∇m as follows: φ1∇mφ2 = ⊕m{di∇ei|di∈φ1, ei∈φ2},
where di is the best match for widening ei as found by the widen affin mea-
sure. Similar to the affinity from Def. 2, the widen-affinity aims to find related
disjuncts, but proceeds by indicating how closely related is the approximation
φ1∇φ2 from the original formula φ1.

widen affin(φ1, φ2) = if (φ1∇φ2)∧¬φ1=false then 100

else if (φ1∇φ2)=true then 0

else heur(φ1, φ2)

The planar affinity measure from Def. 3 can be used for widening, provided we
redefine mset to relate φ1, φ2 with the approximation φwiden = φ1∇φ2 as follows:

mset = {c ∈ (φ1∪φ2)|φwiden ⇒ c}

5 Experiments

We have implemented the proposed inference mechanisms with the goal of ana-
lyzing imperative programs. Our implementation includes a pre-processing phase

Benchmark Source Recursive m=1 m=2 m=3 m=4 m=5
Programs (lines) constraints (secs) (secs) post (secs) post (secs) post (secs) post

binary search 31 1 0.44 1.02 1 - - - - - -
bubble sort 39 2 0.78 0.89 1 - - - - - -
init array 5 1 0.17 0.24 1 - - - - - -
merge sort 58 3 1.42 3.39 3 3.76 1 3.91 1 4.48 1

queens 39 2 1.89 2.41 2 2.48 1 - - - -
quick sort 43 2 0.63 1.51 2 1.70 1 - - - -

FFT 336 9 8.24 10.17 5 11.62 3 11.90 1 12.15 1
LU Decomp. 191 10 10.27 13.41 8 14.44 3 - - - -

SOR 84 5 1.46 2.41 3 3.49 1 3.64 1 - -
Linpack 903 25 28.14 33.23 20 35.04 2 - - - -

Fig. 4. Statistics for postcondition inference. Timings include precondition verification.
(”-” signifies a time or post similar to those from the immediate lower value of m)

to convert each C-like input program to our core language. The entire prototype
system was built using Glasgow Haskell compiler [16] extended with the Omega
constraint solving library [23]. Our test platform was a Pentium 3.0 GHz system
with 2GBytes main memory, running Fedora 4.

We tested our system on a set of small programs with challenging recursion,
and also the Scimark and Linpack benchmark suites [21, 10]. Figure 4 summarizes
the statistics obtained for each program. To quantify the analysis complexity of
the benchmark programs, we counted the program size (column 2) and also the
number of recursive methods and loops present in each program (column 3).

The main objective for building this prototype was to certify that the dis-
junctive analysis can be fully automated and that it gives more precise results
compared to a conjunctive analysis. To this end, we experimented with different
bounds on the number m of disjuncts allowed during fixed point analysis. For
each value of m, we measured the analysis time and the number of methods for
which the postcondition was more precise than using (m−1) disjuncts. For each
analyzed program, we detected a bound on the value of m: increasing m over this
bound does not yield more precision for the formulae. The analysis time remains
constant for cases where m is bigger than this bound, therefore the values be-
yond these bounds are marked with ”-”. Capturing a precise postcondition for
algorithms like binary search, bubble sort, or init array was done with a value
of m equal to 2. We found that queens and quick sort require 3 disjuncts, while
merge sort can be inferred by making use of 5 disjuncts.

We also evaluated the usefulness of the disjunctive fixed point inference
for static array bound check elimination. The results are summarized in the
Fig. 5. Column 2 presents the total number of checks (counted statically) that
are present in the original programs. Columns 3 and 5 present the number of
checks that cannot be proved safe by using conjunctive analysis (m=1) and, re-
spectively, disjunctive analysis with m=5 and planar affinity. For comparison,
column 4 shows results of analysis using the Hausdorff distance heuristic, where
the number of checks not proven is greater than using planar affinity.

Using the planar affinity, the two programs bubble sort and init array were
proven totally safe with 2-disjunctive analysis. Merge sort and SOR exploited

Benchmark Static Conj. Haus. Plan.
Programs Chks. m=1 m=5 m=5

binary search 2 2 2 2
bubble sort 12 3 0 0
init array 2 2 0 0
merge sort 24 9 4 0

queens 8 4 2 2
quick sort 20 5 5 1

FFT 62 17 12 5
LU Decomp. 82 42 9 4

SOR 32 15 2 0
Linpack 166 92 65 52

Fig. 5. Statistics for check elimination

the precision of 4-disjunctive analy-
sis for total check elimination. Even
if not all the checks could be proven
safe for queens, quick sort, FFT, LU
and Linpack benchmarks, the num-
ber of potentially unsafe checks de-
creased gradually, for analyses with
higher values of m. As a matter of fact,
our focus in this paper was to infer
precise postconditions and we relied
on a simple mechanism to derive pre-
conditions. To eliminate more checks,
we could employ the technique of [3]
which is powerful enough to derive
sufficient preconditions and eliminate
all checks in this set of benchmarks [26]. However, we stress that, either kind of
prederivation we use, disjunctive analysis is needed for better check elimination.

In general, analysis with higher values for m has the potential of inferring
more precise formulae. The downside is that computing the affinities of m dis-
juncts is an operation with quadratic complexity in terms of m and may become
too expensive for higher values of m. In practice, we found that the case (m=3)
computes formulae sufficiently precise, with a reasonable inference time.

6 Related Work

Our analysis is potentially useful for software verification and for static analyses
based on numerical abstract domains.

Program verification may be performed by generating verification conditions,
where their validity implies that the program satisfies its safety assertions. Veri-
fication condition generators assume that loop invariants are present in the code,
either annotated by the user or inferred automatically. Methods for loop invari-
ant inference include the induction-iteration approach [25] and approaches based
on predicate abstraction [11, 17]. Leino and Logozzo [18] designed a loop invari-
ant computation that can be invoked on demand when an assertion from the
analyzed program fails. The invariant that is inferred satisfies only a subset of
the program’s executions on which the assertion is encountered. Comparatively,
our method infers a disjunctive formula that is valid for all the program’s exe-
cutions, with each disjunct covering some related execution paths. We achieve
this modularly, regardless of any subsequent assertions. Thus, our results can be
directly used in the inter-procedural setting.

Partitioning of the abstract domain was first introduced in [5]. Recently,
Mauborgne and Rival [19] have given strategies for partition creation and demon-
strated their feasibility through their use in ASTRÉE static analyzer [2]. Like

them, we make the choice of which disjunctions to keep at analysis time. How-
ever, the partitioning criterion is different. In their case, the control flow is used
to choose which disjunctions to keep. Specifically, a token representing some
conditions on the execution flow is attached to a disjunct, and formulae with
similar tokens are hulled together. In our case, the partitioning criterion is based
on a property of the disjuncts themselves, with the affinity measure aiming to
hull together the most closely related disjuncts.

Various abstract numerical domains have been developed for static analysis
based on abstract interpretation. The form of invariants to be discovered is
determined by the chosen numerical domain: from the interval domain that is
able to discover relations of the form (±x≤c), to the lattice of polyhedra that
represents invariants of the form (a1x1+..+anxn≤c), all these abstract domains
represent conjunctions of linear inequalities. Our pre/post analysis is formalised
in a manner that is independent of the abstract domain used. It can therefore
readily benefit from advances in constraint solving techniques for these numerical
domains.

7 Conclusion

We have proposed a new method for inferring disjunctive postconditions. Our
approach is based on the notion of selective hulling as a means to implement
adjustable precision in our analysis. We introduced a simple but novel concept
called affinity and showed that planar affinity is superior to a recently introduced
method based on Hausdorff distance. We have built a prototype system for
disjunctive inference and have proven its correctness in the technical report [22].
Our experiments demonstrate the utility of the disjunctive postconditions for
proving a class of runtime checks safe at compile-time, and the potential for
tradeoff between precision and analysis cost.

Acknowledgements: This work benefited much from research discussions with
Siau-Cheng Khoo and Dana Xu from an earlier project on array bounds infer-
ence. The authors would like to acknowledge two donation grants from Microsoft
Singapore and Microsoft Research Asia, and the support of A*STAR research
grant R-252-000-233-305.

References

[1] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening operators for
powerset domains. In VMCAI, pages 135–148, 2004.

[2] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static ana-
lyzer for large safety-critical software. In PLDI, pages 196–207, 2003.

[3] Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu. Deriving pre-conditions for
array bound check elimination. In PADO, pages 2–24, 2001.

[4] Christopher Colby and Peter Lee. Trace-based program analysis. In POPL, pages
195–207, 1996.

[5] Patrick Cousot. Semantic foundations of program analysis. In Program Flow
Analysis: Theory and Applications, 1981.

[6] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium on Program-
ming, pages 106–130, 1976.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977.

[8] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In POPL, pages 269–282, 1979.

[9] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–96, 1978.

[10] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The Linpack benchmark:
past, present and future. Concurrency and Computation: Practice and Experience,
15(9):803–820, 2003.

[11] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verifica-
tion. In POPL, pages 191–202, 2002.

[12] Roberto Giacobazzi and Francesco Ranzato. Optimal domains for disjunctive
abstract intepretation. Sci. Comput. Program., 32(1-3):177–210, 1998.

[13] Bhargav S. Gulavani and Sriram K. Rajamani. Counterexample driven refinement
for abstract interpretation. In TACAS, 2006.

[14] Jörgen Gustavsson and Josef Svenningsson. Constraint abstractions. In PADO,
pages 63–83, 2001.

[15] Nicholas Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées
par les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

[16] Simon L. Peyton Jones and et al. Glasgow Haskell Compiler.
http://www.haskell.org/ghc.

[17] Shuvendu K. Lahiri and Randal E. Bryant. Indexed predicate discovery for un-
bounded system verification. In CAV, pages 135–147, 2004.

[18] K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In
APLAS, pages 119–134, 2005.

[19] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. In ESOP, pages 5–20, 2005.

[20] Antoine Miné. A new numerical abstract domain based on difference-bound ma-
trices. In PADO, pages 155–172, 2001.

[21] National Institue of Standards and Technology. Java SciMark benchmark for
scientific computing. http://math.nist.gov/scimark2/.

[22] Corneliu Popeea and Wei-Ngan Chin. Inferring disjunctive postconditions. Tech-
nical report. http://www.comp.nus.edu.sg/∼corneliu/research/disjunctive.tr.pdf.

[23] William Pugh. The Omega test: A fast practical integer programming algorithm
for dependence analysis. Communications of the ACM, 8:102–114, 1992.

[24] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta.
Static analysis in disjunctive numerical domains. In SAS, 2006.

[25] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound checker.
In POPL, pages 132–143, 1977.

[26] Dana N. Xu, Corneliu Popeea, Siau-Cheng Khoo, and Wei-Ngan Chin. A modular
type inference and specializer for array bound checks elimination (under prepa-
ration). Technical report. http://www.comp.nus.edu.sg/∼corneliu/research/
array.pdf.

