
Predicate Abstraction and Refinement
for Verifying Multi-Threaded Programs

Ashutosh Gupta Corneliu Popeea Andrey Rybalchenko
Institut für Informatik, Technische Universität München

Germany
{guptaa,popeea,rybal}@in.tum.de

Abstract
Automated verification of multi-threaded programs requires ex-
plicit identification of the interplay between interacting threads, so-
called environment transitions, to enable scalable, compositional
reasoning. Once the environment transitions are identified, we can
prove program properties by considering each program thread in
isolation, as the environment transitions keep track of the interleav-
ing with other threads. Finding adequate environment transitions
that are sufficiently precise to yield conclusive results and yet do
not overwhelm the verifier with unnecessary details about the in-
terleaving with other threads is a major challenge. In this paper
we propose a method for safety verification of multi-threaded pro-
grams that applies (transition) predicate abstraction-based discov-
ery of environment transitions, exposing a minimal amount of in-
formation about the thread interleaving. The crux of our method is
an abstraction refinement procedure that uses recursion-free Horn
clauses to declaratively state abstraction refinement queries. Then,
the queries are resolved by a corresponding constraint solving al-
gorithm. We present preliminary experimental results for mutual
exclusion protocols and multi-threaded device drivers.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Languages, Reliability, Verification.

Keywords Multi-threaded programs, safety, proof rule, modular
reasoning, environment transitions, (transition) predicate abstrac-
tion, abstraction refinement, Horn clauses.

1. Introduction
The ubiquitous availability of parallel computing infrastructures fa-
cilitated by the advent of multicore architectures requires a shift
towards multi-threaded programming to take full advantage of the
available computing resources. Writing correct multi-threaded soft-
ware is a difficult task, as the programmer needs to keep track
of a very large number of possible interactions between the pro-
gram threads. Automated program analysis and verification tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

can support programmer in dealing with this challenge by system-
atically and exhaustively exploring program behaviours and check-
ing their correctness.

Direct treatment of all possible thread interleavings by reason-
ing about the program globally is a prohibitively expensive task,
even for small programs. By applying rely-guarantee techniques,
see e.g. [17, 26], such global reasoning can be avoided by consid-
ering each program thread in isolation, using environment transi-
tions to summarize the effect of executing other threads, and ap-
plying them on the thread at hand. The success of such an ap-
proach depends on the ability to automatically discover environ-
ment transitions that are precise enough to deliver a conclusive
analysis/verification outcome, and yet do not keep track of unnec-
essary details in order to avoid sub-optimal efficiency.

In this paper we present a method that automates rely-guarantee
reasoning for verifying safety of multi-threaded programs. Our
method relies on an automated discovery of environment transi-
tions using (transition) predicate abstraction [12, 28]. It performs
a predicate abstraction-based reachability computation for each
thread and interleaves it with the construction of environment tran-
sitions that over-approximate the effect of executing thread transi-
tions using transition predicates. The success of our method cru-
cially depends on an abstraction refinement procedure that discov-
ers (transition) predicates. The refinement procedure attempts to
minimize the amount of details that are exposed by the environ-
ment transitions, in order to avoid unnecessary details about thread
interaction.

The crux of our refinement approach is in using a declarative
formulation of the abstraction refinement algorithm that can deal
with the thread reachability, environment transitions, and their mu-
tual dependencies. We use Horn clauses to describe constraints on
the desired (transition) predicates, and solve these constraints us-
ing a general algorithm for recursion-free Horn clauses. Our for-
malization can accommodate additional requirements that express
the preference for modular predicates that do not refer to the local
variables of environment threads, together with the preference for
modular transition predicates that only deal with global variables
and their primed versions.

We implemented the proposed method in a verification tool
for multi-threaded programs and applied it on a range of bench-
marks, which includes fragments of open source software, ticket-
based mutual exclusion protocols, and multi-threaded Linux device
drivers. The results of the experimental evaluation indicate that our
declarative abstraction refinement approach can be effective in find-
ing adequate environment transitions for the verification of multi-
threaded programs.

This paper makes the following contributions:

1. the automatic, rely-guarantee based method for verifying multi-
threaded programs using (transition) predicate abstraction;

2. the novel formulation of abstraction refinement schemes using
Horn clauses, and its application for the (transition) abstraction
discovery for multi-threaded programs;

3. the algorithm for solving recursion-free Horn clauses over lin-
ear arithmetic constraints;

4. the prototype implementation and its evaluation.

The rest of the paper is organized as follows. First, we illustrate
our method in Section 2. In Section 3 we present necessary def-
initions. Section 4 presents a proof rule that provides a basis for
our method, and shows how the proof rule can be automated using
the connection to fixpoints and abstraction techniques. We present
the main algorithm in Section 5. Section 6 focuses on the abstrac-
tion refinement using Horn clauses, while Section 7 presents a con-
straint solving algorithm for Horn clauses over linear inequalities.
We discuss the experimental evaluation in Section 8. Related work
is presented in Section 9.

2. Illustration
In this section we illustrate our algorithm using two multi-threaded
examples. The first example does not have a modular proof, hence
our algorithm reasons about relationship between the local vari-
ables of different threads. For the second example, our algorithm
succeeds in finding a modular proof by applying an abstraction re-
finement procedure that guarantees the discovery of a modular ab-
straction whenever it exists.

2.1 Example LockBit
See Figure 1 for the program LockBit that consists of two threads.
The threads attempt to access a critical section, and synchronize
their accesses using a global variable lock . We assume that ini-
tially the lock is not taken, i.e., lock = 0 , and that the locking
statement take_lock waits until the lock is released and then as-
signs the value of its second parameter to lock , thus taking the
lock. We write V = (lock, pc1, pc2) for the program variables,
where pc1 and pc2 are local program counter variables of the first
and second thread, respectively.

We start by representing the program using assertions ϕinit and
ϕerr over program variables that describe the initial and error states
of the program, together with assertions over unprimed and primed
program variables ρ1 and ρ2 that describe the transition relations
for program statements.

ϕinit = (pc1 = a ∧ pc2 = p ∧ lock = 0) ,

ϕerr = (pc1 = b ∧ pc2 = q) ,

ρ1 = (lock = 0 ∧ lock′ = 1 ∧ pc1 = a ∧ pc1
′ = b ∧ ρ=

2) ,

ρ=
1 = (pc1 = pc1

′) ,

ρ2 = (lock = 0 ∧ lock′ = 1 ∧ pc2 = p ∧ pc2
′ = q ∧ ρ=

1) ,

ρ=
2 = (pc2 = pc2

′) .

The auxiliary assertions ρ=
1 and ρ=

2 state that the local variable of
the first and second thread, respectively, is preserved during the
transition.

To verify LockBit, our algorithm computes a sequence of
ARETs (Abstract Reachability and Environment Trees). Each tree
computation amounts to a combination of i) a standard abstract
reachability computation that is performed for each thread and is
called thread reachability, and ii) a construction and application of
environment transitions. Abstract states represent sets of (concrete)
program states, while environment transitions are binary relations
of program states.

// Thread 1
a: take_lock(lock, 1);
b: // critical

// Thread 2
p: take_lock(lock, 1);
q: // critical

Figure 1. Example program LockBit. Each thread waits until the
lock is released, and then assigns the integer 1 to lock .

(a)

m1

m2

ρ1

n1

n2

ρ2

(b)

m1

m2

ρ1

m3

e2

n1

n2

ρ2

n3

e1

(c)

m1

m2

ρ1

m3

e2

n1

n2

ρ2

n3

e1

Figure 2. Reachability trees constructed using different abstrac-
tion functions. Edges are labeled with a transition. Nodes with gray
background represent (spurious) error tuples: (m2, n2) from (a)
and (m3, n3) from (b). No pair of states from (c) intersects ϕerr .

First ARET computation The thread reachability computation
for the first thread starts by computing an abstraction of the initial
program states ϕinit . Here, we use an abstraction function α̇1 ,
where the dot indicates that this function over-approximates sets of
program states (and not sets of pairs of states, as will take place
later) and the index 1 indicates that this abstraction function is used
for the first thread. In this example, we assume that the abstraction
function only tracks the value of the program counter of the first
thread, i.e., Ṗ1 = {pc1 = a, pc1 = b} , and is computed as
follows: α̇1(S) =

∧
{ṗ ∈ Ṗ1 | ∀V : S → ṗ} . We obtain the

initial abstract state m1 as follows:

m1 = α̇1(ϕinit) = (pc1 = a) .

Next, we compute an abstract successor of m1 with respect to the
transition ρ1 using the strongest postcondition operator post that
is combined with α̇1:

m2 = α̇1(post(ρ1,m1)) = (pc1 = b) .

Similarly, we compute the thread reachability for the second
thread. Using predicates over the program counter of the second
thread, i.e., Ṗ2 = {pc2 = p, pc2 = q} , we compute the following
two abstract states:

n1 = α̇2(ϕinit) = (pc2 = p) ,

n2 = α̇2(post(ρ2, n1)) = (pc2 = q) .

For each thread, we organize the computed abstract states in a tree,
see Figure 2(a).

We stop the ARET computation since we discover that the error
states overlap with the intersection of the abstract state m2 from

the thread reachability of the first thread and n2 from the second
thread, i.e., m2 ∧ n2 ∧ ϕerr is satisfiable.

First abstraction refinement We treat the pair m2 and n2 as
a possible evidence that the error states of the program can be
reached. Yet, we cannot assert that the program is incorrect, since
abstraction was involved when computing m2 and n2 .

We check if the discovered evidence is spurious by formulat-
ing a constraint that is satisfiable if and only if the abstraction can
be refined to exclude the spuriousness. For each abstract state in-
volved in the reachability of and including m2 and n2 we create an
unknown predicate that denotes a set of program states. We obtain
“m1”(V), “n1”(V), “m2”(V), and “n2”(V) , which correspond
to m1, n1, m2, and n2, respectively. Then, we record the relation
between the unknown predicates using constraints in the form of
Horn clauses. For example, since m1 was an abstraction of the ini-
tial program states, we require that “m1”(V) over-approximates
ϕinit as well, and represent this requirement by a Horn clause
ϕinit → “m1”(V) . As a result, we obtain the following set of
clauses.

HC1 = {ϕinit → “m1”(V), “m1”(V) ∧ ρ1 → “m2”(V ′),

ϕinit → “n1”(V), “n1”(V) ∧ ρ2 → “n2”(V ′),

“m2”(V) ∧ “n2”(V) ∧ ϕerr → false}
The last clause in HC1 requires that the intersection of the refined
versions of the abstract states m2 and n2 is disjoint from the error
states of the program.

We check if the conjunction of the clauses in HC1 is satisfiable
using a SAT-based algorithm presented in [13]. (Section 7 presents
an algorithm for solving Horn clauses over linear inequalities.) We
obtain the following satisfying assignment SOL that maps each
unknown predicate to an assertion of the program variables.

SOL(“m1”(V)) = (pc2 = p) SOL(“n1”(V)) = (pc1 = a)

SOL(“m2”(V)) = (pc2 = p) SOL(“n2”(V)) = (pc1 = a)

The existence of SOL indicates that the discovered evidence is
spurious. We use SOL to refine the abstraction functions and hence
eliminate the source of spuriousness. We collect the predicates that
appear in the solution for abstract states from the first thread, add
them to the sets of predicates Ṗ1, and perform a similar step for the
second thread. The resulting sets of predicates are shown below.

Ṗ1 = {pc1 = a, pc1 = b, pc2 = p}
Ṗ2 = {pc2 = p, pc2 = q, pc1 = a}

They guarantee that the same spuriousness will not appear during
subsequent ARET computations.

Second ARET computation We re-start the ARET computation
using the previously discovered predicates. Figure 2(b) shows the
two trees computed with the refined abstraction functions where

m1 = (pc1 = a ∧ pc2 = p) , n1 = (pc1 = a ∧ pc2 = p) ,

m2 = (pc1 = b ∧ pc2 = p) , n2 = (pc1 = a ∧ pc2 = q) .

Due to the first abstraction refinement step, m2 ∧ n2 ∧ ϕerr is
unsatisfiable. The thread reachability computation for each thread
does not discover any further abstract states.

The ARET computation proceeds by considering interleaving of
the transitions from one thread with the transitions from the other
thread. We account for thread interleaving by constructing and ap-
plying environment transitions. First, we construct an environment
transition e1 that records the effect of applying ρ1 on m1 in the
first thread on the thread reachability in the second thread. This ef-
fect is over-approximated by using an abstraction function α̈1.2.
In this function, the double dot indicates that the function abstracts
binary relations over states (and not sets of states). The index 1 . 2

indicates that this function is applied to abstract effect of the first
thread on the second thread. Initially, we use the empty set of tran-
sition predicates (over pairs of states) P̈1.2 = ∅ to define α̈1.2.
The environment transition e1 is defined as

e1 = α̈1.2(m1 ∧ ρ1) = true ,

and it non-deterministically updates the program variables (since
true does not impose any restrictions on the successor states of the
transition).

Next, we add e1 to the transitions of the second thread. Then,
its thread reachability computation uses e1 during the abstract
successor computation, and creates an abstract state n3 by applying
e1 on n2 as follows:

n3 = α̇2(post(e1 ∧ ρ=
2 , n2)) = (pc2 = q) .

The conjunct ρ=
2 ensures that the local variable of the second thread

is not changed by the environment transition.
Symmetrically, we use a function α̈2.1 to abstract the effect of

applying transitions in the second thread on the thread reachability
of the first thread. The application of ρ2 on n1 results in the
environment transition e2 such that

e2 = α̈2.1(n1 ∧ ρ2) = true .

We apply e2 to contribute an abstract successor m3 of the abstract
state m2 to the thread reachability of the first thread:

m3 = α̇1(post(e2 ∧ ρ=
1 ,m2)) = (pc1 = b) .

We observe that the intersection of the abstract states m3 and
n3 contains a non-empty set of error states, i.e., m3 ∧ n3 ∧ ϕerr is
satisfiable, thus delivering a possible evidence for incorrectness.

Second abstraction refinement Similarly to the first abstrac-
tion refinement step, we construct a set of Horn clauses HC2 to
check if the discovered evidence is spurious. We consider pred-
icates “m1”(V), “n1”(V), “m2”(V), “n2”(V), “m3”(V), and
“n3”(V) that represent unknown sets of program states, together
with “e1”(V, V ′) and “e2”(V, V ′) that represent unknown binary
relations over program states.

HC2 = {ϕinit → “m1”(V), “m1”(V) ∧ ρ1 → “m2”(V ′),

ϕinit → “n1”(V), “n1”(V) ∧ ρ2 → “n2”(V ′),

“m1”(V) ∧ ρ1 → “e1”(V, V ′),

“n2”(V) ∧ “e1”(V, V ′) ∧ ρ=
2 → “n3”(V ′),

“n1”(V) ∧ ρ2 → “e2”(V, V ′),

“m2”(V) ∧ “e2”(V, V ′) ∧ ρ=
1 → “m3”(V ′),

“m3”(V) ∧ “n3”(V) ∧ ϕerr → false}

The conjunction of clauses in HC2 is satisfiable. We obtain the
following satisfying assignment SOL.

SOL(“m1”(V)) = true SOL(“m2”(V)) = (lock = 1)

SOL(“n1”(V)) = true SOL(“n2”(V)) = (lock = 1)

SOL(“m3”(V)) = false SOL(“e1”(V, V ′)) = (lock = 0)

SOL(“n3”(V)) = false SOL(“e2”(V, V ′)) = (lock = 0)

This solution constrains “m2”(V) and “n2”(V) to states where
the lock is held (lock = 1) , while the environment transitions
“e1”(V, V ′) and “e2”(V, V ′) are applicable only in states for which
the lock is not held by the respective thread (lock = 0) .

We add the (transition) predicates that appear in the environ-
ment transition e2 of the first thread to the set P̈2.1 , and, symmet-
rically, we add the predicates from e1 to P̈1.2. For the next ARET

// Thread 1
a: take_lock(lock, 1);
b: // critical

// Thread 2
p: take_lock(lock, 2);
q: // critical

Figure 3. Example program LockId .

computation we have the following set of predicates:

Ṗ1 = {pc1 = a, pc1 = b, pc2 = p, lock = 1} ,
Ṗ2 = {pc2 = p, pc2 = q, pc1 = a, lock = 1} ,
P̈1.2 = {lock = 0} ,
P̈2.1 = {lock = 0} .

Last ARET computation We perform another ARET computation
and a subsequent abstraction refinement step. We add the predicate
lock′ = 1 to both P̈1.2 and P̈2.1, and proceed with the final ARET
computation. Figure 2(c) shows the resulting trees. The application
of thread transitions produces the following abstract states and
environment transitions:

m1 = α̇1(ϕinit) = (pc1 = a ∧ pc2 = p) ,

n1 = α̇2(ϕinit) = (pc1 = a ∧ pc2 = p) ,

m2 = α̇1(post(ρ1,m1)) = (pc1 = b ∧ pc2 = p ∧ lock = 1) ,

n2 = α̇2(post(ρ2, n1)) = (pc1 = a ∧ pc2 = q ∧ lock = 1) ,

e1 = α̈1.2(m1 ∧ ρ1) = (lock = 0 ∧ lock′ = 1) ,

e2 = α̈2.1(n1 ∧ ρ2) = (lock = 0 ∧ lock′ = 1) .

The environment transitions e1 and e2 produce the abstract states
m3 and n3 whose intersection does not contain any error states.

m3 = α̇1(post(e2 ∧ ρ=
1 ,m2)) = (pc1 = a ∧ lock = 1)

n3 = α̇2(post(e1 ∧ ρ=
2 , n2)) = (pc2 = p ∧ lock = 1)

Neither thread nor environment transitions can be applied from
the abstract states m3 and n3, while no further abstract states are
found. Since each pair of abstract states from different threads
yields an intersection that is disjoint from the error states, we
conclude that LockBit is safe. The labeling of the computed trees
can be directly used to construct a safety proof for LockBit, as
Sections 4 and 5 will show.

2.2 Example LockId
Our second example LockId, shown in Figure 3, is a variation of
LockBit. LockId uses an integer variable lock (instead of a single
bit) to record which thread holds the lock. Due to this additional
information recorded in the global variable, the example LockId
has a modular proof, which does not refer to any local variables. We
show how our algorithm discovers such a proof by only admitting
modular predicates in the abstraction refinement step.

LockId differs from LockBit in its transition relation ρ2:

ρ2 = (lock = 0 ∧ lock
′ = 2 ∧ pc2 = p ∧ pc2

′ = q ∧ ρ=
1) .

First ARET computation Similarly to LockBit, we discover that
m2∧n2∧ϕerr is satisfiable, and compute the following set of Horn
clauses:

HC3 = {ϕinit → “m1”(V), “m1”(V) ∧ ρ1 → “m2”(V ′),

ϕinit → “n1”(V), “n1”(V) ∧ ρ2 → “n2”(V ′),

“m2”(V) ∧ “n2”(V) ∧ ϕerr → false} .
One possible satisfying assignment SOL is:

SOL(“m1”(V)) = (pc2 = p) , SOL(“n1”(V)) = (pc1 = a) ,

SOL(“m2”(V)) = (pc2 = p) , SOL(“n2”(V)) = (pc1 = a) .

m1

m2

ρ1

n1

n2

ρ2

Figure 4. Tree that shows all the reachable abstract states found
during the last ARET computation for LockId.

This assignment uses a predicate pc2 = p over the local variable of
the second thread as a solution for the abstract state “m1”(V) in the
thread reachability of the first thread. By collecting and using the
corresponding predicates, we will discover a non-modular proof.

To avoid the drawbacks of non-modular proofs, our algo-
rithm does not use HC3 and attempts to find modular predicates
for abstraction refinement instead. We express the preference for
modular predicates declaratively, using a set of Horn clauses in
which the unknown predicates are restricted to the desired vari-
ables, as described in Sections 6. For the abstract states in the
first thread, we require that the corresponding solutions are over
the global variable lock and the local variable pc1 of the first
thread, i.e., we have the unknown predicates “m1”(lock, pc1)
and “m2”(lock, pc1). Similarly, for the second thread we obtain
“n1”(lock, pc2) and “n2”(lock, pc2). Instead of HC3, we use a
set of Horn clauses HC4 shown below:

HC4 = {ϕinit → “m1”(lock, pc1),

“m1”(lock, pc1) ∧ ρ1 → “m2”(lock′, pc1
′),

ϕinit → “n1”(lock, pc2),

“n1”(lock, pc2) ∧ ρ2 → “n2”(lock′, pc2
′),

“m2”(lock, pc1) ∧ “n2”(lock, pc2) ∧ ϕerr → false} .

The conjunction of clauses from HC4 can be satisfied by an assign-
ment SOL such that

SOL(“m1”(lock, pc1)) = true ,

SOL(“m2”(lock, pc1)) = (lock = 1) ,

SOL(“n1”(lock, pc2)) = true ,

SOL(“n2”(lock, pc2)) = (lock = 2) ,

which contains only modular predicates.

Last ARET computation We present the last ARET computation
for LockBit, which uses on the following (transition) predicates
collected so far:

Ṗ1 = {pc1 = a, pc1 = b, lock = 1} ,
Ṗ2 = {pc2 = p, pc2 = q, lock = 2} ,
P̈2.1 = {lock = 0} ,
P̈1.2 = {lock = 0} .

Figure 4 shows the resulting abstract reachability and environment
trees constructed as follows:

m1 = α̇1(ϕinit) = (pc1 = a)

n1 = α̇2(ϕinit) = (pc2 = p)

m2 = α̇1(post(ρ1,m1)) = (pc1 = b ∧ lock = 1)

n2 = α̇2(post(ρ2, n1)) = (pc2 = q ∧ lock = 2)

e1 = α̈1.2(m1 ∧ ρ1) = (lock = 0)

e2 = α̈2.1(n1 ∧ ρ2) = (lock = 0)

The ARET construction is completed, since

α̇1(post(e2 ∧ ρ=
1 ,m1))→ m1 , α̇1(post(e2,m2)) = false ,

α̇2(post(e1 ∧ ρ=
2 , n1)) → n1 , α̇2(post(e1, n2)) = false .

By inspecting pairs of abstract states from different trees we con-
clude that LockId is safe.

Furthermore no predicate in Ṗ1 refers to the local variable
of the second thread, the symmetric condition holds for Ṗ2, and
the predicates in P̈1.2 as well as P̈2.1 do not refer to any local
variables. Thus, from the trees in Figure 4 we can construct a
modular safety proof.

3. Preliminaries
In this section we briefly describe multi-threaded programs, their
computations and correctness. We also introduce auxiliary defini-
tions that we apply for reasoning about programs.

Programs We consider a multi-threaded program P that consists
of N ≥ 1 concurrent threads. Let 1..N be the set {1, . . . ,N} .
We assume that the program variables V = (VG, V1, . . . , VN) are
partitioned into global variables VG that are shared by all threads,
and local variables V1, . . . , VN that are only accessible by the
threads 1, . . . ,N , respectively.

The set of global states G consists of the valuations of global
variables, and the sets of local states L1, . . . , LN consist of the
valuations of the local variables of respective threads. By taking
the product of the global and local state spaces, we obtain the
set of program states Σ = G × L1 × · · · × LN . We represent
sets of program states using assertions over program variables.
Binary relations between sets of program states are represented
using assertions over unprimed and primed variables. Let |= denote
the satisfaction relation between (pairs) of states and assertions.

The set of initial program states is denoted by ϕinit , and the set
of error states is denoted by ϕerr . For each thread i ∈ 1..N we
have a finite set of transition relations Ti , which are abbreviated
as transitions. Each transition ρ ∈ Ti can change the values of the
global variables and the local variables of the thread i . Let ρ=

i be
a constraint requiring that the local variables of the thread i do not
change, i.e., ρ=

i = (Vi = V ′i) . Then, ρ ∈ Ti has the form

ρupdate(VG, Vi, V
′
G, V

′
i) ∧

∧
j∈1..N\{i}

ρ=
j ,

where the first conjunct represents the update of the variables in
the scope of the thread i and the remaining conjuncts ensure that
the local variables of other threads do not change. We write ρi for
the union of the transitions of the thread i , i.e., ρi =

∨
Ti . The

transition relation of the program is ρT = ρ1 ∨ · · · ∨ ρN .

Computations A computation of P is a sequence of program
states s1, s2, . . . such that s1 is an initial state, i.e., s1 |= ϕinit ,
and each pair of consecutive states si and si+1 in the sequence
is connected by some transition ρ from a program thread, i.e.,
(si, si+1) |= ρ . A path is a sequence of transitions. We write ε
for the empty sequence.

Let [z/w] be a substitution function such that ϕ[z/w] replaces
w by z in ϕ . Let ◦ be the relational composition function for
binary relations given by assertions over unprimed and primed
variables such that for assertions ϕ and ψ we have ϕ ◦ ψ =
∃V ′′ : ϕ[V ′′/V ′]∧ψ[V ′′/V] . Then, a path relation is a relational
composition of transition relations along the path, i.e., for π =
ρ1 · · · ρn we have ρπ = ρ1 ◦ . . . ◦ ρn . A path π is feasible if
its path relation is not empty, i.e., ∃V, V ′ : ρπ .

A program state is reachable if it appears in some computation.
Let ϕreach denote the set of reachable states. The program is safe if
none of its error states is reachable, i.e., ϕreach ∧ ϕerr → false .

For assertions R1, . . . , RN over V ,
and E1, . . . , EN over V and V ′

CS1: ϕinit → Ri for i ∈ 1..N

CS2: Ri ∧ ρi → R′i for i ∈ 1..N

CS3: Ri ∧ Ei ∧ ρ=
i → R′i for i ∈ 1..N

CS4: (
∨
i∈1..N\{j}Ri ∧ ρi) → Ej for j ∈ 1..N

CS5: R1 ∧ · · · ∧RN ∧ ϕerr → false

program P is safe

Figure 5. Proof rule REACHENV for compositional safety proofs
of multi-threaded programs.R′i stands forRi[V ′/V] . REACHENV
yields a pre-fixpoint characterization through Equations (1).

Auxiliary definitions We define a successor function post such
that for a binary relation over states ρ and a set of states ϕ we have

post(ρ, ϕ) = ∃V ′′ : ϕ[V ′′/V] ∧ ρ[V ′′/V][V/V ′] .

We also extend the logical implication to tuples of equal length,
i.e.,

(ϕ1, . . . , ϕn)→ (ψ1, . . . , ψn) = ϕ1 → φ1 ∧ · · · ∧ ϕn → φn ,

where each implication is implicitly universally quantified over the
free variables occurring in it. From now on, we assume that tuples
of assertions are partially ordered by the above extension of→ .

A Horn clause b1(w1) ∧ · · · ∧ bn(wn) → b(w) consists of
relation symbols b1,. . . , bn, b, and vectors of variables w1,. . . ,
wn, w. For the algorithm SOLVELINEARHC in Section 7 we only
consider Horn clauses over linear arithmetic. We say that b depends
on the relation symbols {bi | i ∈ 1..n ∧ bi 6= (≤)} . A set
of Horn clauses is recursion-free if the transitive closure of the
corresponding dependency relation is well founded.

4. Proof rule, fixpoints, and abstraction
In this section we develop the foundations for our verification
algorithm. We present a compositional proof rule and then derive a
corresponding characterization in terms of least fixpoints and their
approximations. We present the ability of our proof rule to facilitate
modular reasoning, when admitted by the program, without losing
the ability for global reasoning otherwise.

Proof rule Figure 5 presents a proof rule REACHENV for com-
positional verification of program safety. The proof rule is inspired
by the existing proof rules for compositional safety reasoning, see
e.g. [5, 15, 16, 26]. Our formulation of REACHENV directly leads
to a pre-fixpoint characterization, thus, providing a basis for the
proof rule automation using abstraction and refinement techniques.

REACHENV relies on thread reachability assertions
R1, . . . , RN that keep track of program states reached by
threads 1, . . . ,N together with their respective environment
transitions E1, . . . , EN . The environment transition of each thread
keeps track of modifications of program states by other threads.
The auxiliary assertions used in our proof rule can refer to all
program variables, that is, they are not restricted to a combination
of global variables and local variables of a particular thread.

If the provided auxiliary assertions satisfy all premises of
the proof rule, i.e., CS1, . . . , CS5, then the program is safe.
The premise CS1 requires that each thread reachability over-
approximates the initial program states. CS2 ensures that the thread
reachability of each thread is invariant under the application of the
thread transitions. In addition, CS3 requires invariance under the
environment transitions of the thread. The conjunct ρ=

i in CS3 se-

lects the subset of the environment transition that does not modify
the local variables of the thread. Given a thread j , the premise CS4
collects transitions that start from states in the thread reachability
of other threads and combines them into the environment transition
for j . Finally, CS5 checks that there is no error state that appears
in each thread reachability set.

The proof rule REACHENV can be directly used to prove pro-
gram safety following a two-step procedure. First, we need to iden-
tify candidate assertions for the thread reachability and environ-
ment transitions. Second, we need to check that these candidate
assertions satisfy the premises of proof rule. The correctness of the
conclusion is formalized by the following theorems.

THEOREM 1 (Soundness). The proof rule REACHENV is sound.
�

Proof. Let R1, . . . , RN and E1, . . . , EN satisfy the premises CS1,
. . . , CS5. We show that the program is safe. To prove safety, for
each reachable state s |= ϕreach we prove that s |= R1 ∧ · · · ∧RN

by induction over the length k of a shortest computation segment
s1, . . . , sk such that s1 |= ϕinit and sk = s .

For the base case k = 1, the inclusion holds due to the premise
CS1. For the induction step, we assume that the above statement
holds for states reachable in k ≥ 1 steps and prove the statement
for their immediate successors. That is, let sk |= ϕreach and hence
sk |= R1 ∧ · · · ∧ RN . If sk does not have any successor, i.e.,
¬(∃sk+1 : (sk, sk+1) |= ρT) , then there are no more states to
consider. Otherwise, we choose a successor state sk+1 of sk that is
reached by taking a transition in a thread i , i.e., (sk, sk+1) |= ρi .
From CS2 follows that sk+1 |= Ri .

To show that sk+1 |= Rj for each j ∈ 1..N \ {i} we rely on
the premises CS4 and CS3. By induction hypothesis sk |= Ri and
due to CS4 we have (sk, sk+1) |= Ej . Now sk+1 ∈ Rj follows
from CS3. �

THEOREM 2 (Relative completeness). The proof rule REACHENV
is complete relative to first-order reasoning. �

Proof. Let P be safe. We define R1 = · · · = RN = ϕreach and
E1 = · · · = EN = ϕreach ∧ ρT . Then, the premises CS1, . . . ,
CS5 are immediately satisfied. �

Modular and global proofs Reasoning about multi-threaded pro-
gram is more complex than reasoning about sequential programs
since thread interaction needs to be taken into account. Some pro-
grams admit modular reasoning that deals with each thread in iso-
lation, i.e., assertions used in the proof only refer to the global vari-
ables and the local variables of one thread at a time.

The proof rule REACHENV facilitates modular reasoning about
multi-threaded programs. If a program has a modular safety
proof, then the following modular assertions satisfy the proof rule
premises:

Ri = ∃V \ (VG ∪ Vi) : ϕreach , for i ∈ 1..N

Ei = ∃(V ∪ V ′) \ (VG ∪ V ′G) : ϕreach ∧ ρT . for i ∈ 1..N

REACHENV is not restricted to modular proofs. Since the as-
sertions used in REACHENV can refer to each of the program vari-
ables, non-modular proofs can be directly used. In fact, the proof
of Theorem 2 relies on non-modular assertions, since ϕreach may
refer to local variables of different threads.

In Section 5 we will present our algorithm that can discover
modular assertions for REACHENV if the program admits modular
proofs, and delivers non-modular assertions otherwise.

Fixpoints The proof rule REACHENV in Figure 5 directly leads
to a fixpoint-based characterization, which defines our algorithm in
Section 5.

From the premises CS2, CS3, and CS4 we obtain a function F
on N-tuples of assertions over the program variables and N-tuples
of assertions over the unprimed and primed program variables such
that
F (S1, . . . , SN, T1, . . . , TN) =

(post(ρ1 ∨ T1 ∧ ρ=
1 , S1), . . . , post(ρN ∨ TN ∧ ρ=

N , SN),∨
i∈1..N\{1} Si ∧ ρi, . . . ,

∨
i∈1..N\{N} Si ∧ ρi) .

(1)

We formalize the relation between F and REACHENV as follows.

LEMMA 1. Each pre-fixpoint of F satisfies the premises CS2, CS3,
and CS4 of REACHENV. That is, if

F (R1, . . . , RN, E1, . . . , EN)→ (R1, . . . , RN, E1, . . . , EN)

then R1, . . . , RN, E1, . . . , EN satisfies CS2, CS3, and CS4 . �

We define a distinguished tuple ⊥F :

⊥F = (ϕinit , . . . , ϕinit , false, . . . , false︸ ︷︷ ︸
N times

) . (2)

Then, each pre-fixpoint of F that is greater than
⊥F satisfies the premise CS1. By choosing a pre-
fixpoint (R1, . . . , RN, E1, . . . , EN) above ⊥F such that
R1 ∧ . . . , RN ∧ ϕerr → false we will satisfy all premises
of the proof rule REACHENV, and hence prove the program safety.

Fixpoint abstraction Computing pre-fixpoints of F that satisfy
CS1 and CS5 is a difficult task. We automate this computation
using the framework of abstract interpretation [7], which uses over-
approximation to strike a balance between reasoning precision and
efficiency. To implement required over-approximation functions,
we will use a collection of abstraction functions α̇i and α̈i.j , where
i 6= j ∈ 1..N, that over-approximate sets and binary relations over
programs states, respectively.

We define a function F# that over-approximates F using given
abstraction functions:

F#(S1, . . . , SN, T1, . . . , TN) =

(α̇1(post(ρ1, S1)) ∨ α̇1(post(T1 ∧ ρ=
1 , S1)) ,

· · ·
α̇N(post(ρN, SN) ∨ α̇N(post(TN ∧ ρ=

N , SN)) ,∨
i∈1..N\{1} α̈i.1(Si ∧ ρi) ,

· · ·∨
i∈1..N\{N} α̈i.N(Si ∧ ρi)) .

(3)

Let ⊥F# be an over-approximation of F such that

⊥F# = (α̇1(ϕinit), . . . , α̇N(ϕinit), false, . . . , false︸ ︷︷ ︸
N times

) . (4)

The least pre-fixpoint of F# above ⊥F# can be used to prove
program safety by applying the following theorem, and is the key
outcome of our algorithm in Section 5.

THEOREM 3 (Abstract fixpoint checking). If the least pre-fixpoint
of F# above ⊥F# , say (R1, . . . , RN, E1, . . . , EN), satisfies the
premise CS5 then the program is safe. �

Proof. The theorem follows directly from the soundness of the
proof rule REACHENV, Lemma 1, and over-approximations
introduced by the applied abstraction functions. �

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

function MAIN

input
P - program with N threads

vars
Ṗi, α̇i - predicates for thread i and

corresponding state abstraction function
P̈i.j , α̈i.j - transition predicates for pair of threads i, j and

corresponding transition abstraction function
Ri - abstract states of thread i
Ei - abstract environment transitions of thread i
Parent - parent function for abstract states and

environment transitions
ParentTId - parent thread function for abstract states and

environment transitions
begin

for each i 6= j ∈ 1..N do
Ṗi := P̈i.j := ∅

repeat
for each i 6= j ∈ 1..N do
α̇i := λS.

∧
{ṗ ∈ Ṗi | ∀V : S → ṗ}

α̈i.j := λT.
∧
{p̈ ∈ P̈i.j | ∀V, V ′ : T → p̈}

ABSTREACHENV()
if exists S1 ∈ R1, . . . , SN ∈ RN such that
∃V : S1 ∧ · · · ∧ SN ∧ ϕerr

then
try

REFINE(S1, . . . , SN)
with UNSATISFIABLE

D := some Si from {S1, . . . , SN}
return “counterexample MKPATH(D)”

else
return “program P is safe with the proof∨

R1, . . . ,
∨
RN,

∨
E1, . . . ,

∨
EN”

until true
end.

Figure 6. Function MAIN for verifying safety of the multi-
threaded program P .

The choice of the abstract domains, i.e., the range sets of the
abstraction functions, determines if the least fixpoint of F# yields
a modular proof. Our abstraction discovery algorithm in Section 6
automatically chooses the abstraction such that modular proofs are
preferred.

5. Thread reachability and environment
transitions

In this section, we present our rely-guarantee based verification
algorithm for proving safety properties of multi-threaded programs.
The algorithm is based on Theorem 3 and consists of three main
steps. The first step computes for each thread a tree that is decorated
by abstract states and environment transitions, so-called ARET, and
analyses the discovered abstract states. If an intersection with the
error states of the program is found, then the second step generates
a set of corresponding Horn clauses, see Section 6. At the third step,
we solve the constraint defined by the conjunction of the generated
Horn clauses and use the solutions to the refine the abstraction
functions used for the ARET computation, see Section 7.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

procedure ABSTREACHENV

begin
Parent := ParentTId := ⊥ (∗ the empty function ∗)
for each i ∈ 1..N do
Ri := {α̇i(ϕinit)}
Ei := ∅

repeat
finished := true

for each i ∈ 1..N and S ∈ Ri do
(∗ states ∗)
for each ρ ∈ Ti ∪ Ei do
S′ := if ρ ∈ Ti then α̇i(post(ρ, S))

else α̇i(post(ρ ∧ ρ=
i , S))

if ¬(∃S′′ ∈ Ri ∀V : S′ → S′′) then
Ri := {S′} ∪ Ri
Parent(S′) := (S, ρ)

ParentTId(S′) := i

finished := false

done
(∗ environment transitions ∗)
for each ρ ∈ Ti and j ∈ 1..N \ {i} do
ρ′ := α̈i.j(S ∧ ρ)

if ¬(∃ρ′′ ∈ Tj ∪ Ej ∀V, V ′ : ρ′ → ρ′′) then
Ej := {ρ′} ∪ Ej
Parent(ρ′) := (S, ρ)

ParentTId(ρ′) := i

finished := false

done
done

until finished

end

Figure 7. Procedure ABSTREACHENV implements ARET compu-
tation. We assume that the iterator statements in lines 7 and 9 make
an immutable snapshot of their domains Ri and Ei, respectively.
For example, this implies that each addition of S′ in line 12 is un-
noticed in line 7 until the next iteration of the repeat loop.

Function MAIN The main function of our algorithm MAIN is
shown in Figure 6. MAIN takes as input the multi-threaded pro-
gram P . The repeat loop iterates through the three main steps of
the algorithm. First, we construct the abstraction functions α̇i and
α̈i.j at lines 4–6 from a given set of (transition) predicates, which is
empty initially. Next, the ARET computation is performed in line 7
using these abstraction functions. In lines 8–9, the abstract states in
the computed ARET’s are analyzed wrt. the safety property. In case
of a positive outcome of this check, MAIN constructs and returns a
safety proof in lines 17–18. If the safety check fails, then REFINE is
executed on the violating abstract states. If REFINE terminates nor-
mally, and hence succeeds in eliminating the violation by refining
the abstraction functions, then MAIN continues with the next iter-
ation of the repeat loop. In case an UNSATISFIABLE exception is
thrown, MKPATH from Figure 8 constructs a counterexample path
that we report to the user.

Procedure ABSTREACHENV See Figure 7 for the procedure
ABSTREACHENV that implements ARET computation using the
abstraction functions α̇i and α̈i.j . We use Parent and ParentTId
to maintain information about the constructed trees, and initialize

1
2
3
4
5
6
7

function MKPATH

input
D - abstract state

begin
match Parent(D) with
| (S, ρ) ->
π := MKPATH(S)
match Parent(ρ) with
| (O, ρO) -> return π · ρO
| ⊥ -> return π · ρ

| ⊥ -> return ε (∗ the empty sequence ∗)
end

Figure 8. Function MKPATH takes as input an abstract stateD and
returns a sequence of transitions that lead to D.

them with the empty function ⊥ in line 1. Ri and Ei keep track of
abstract states and environment transitions for a thread i ∈ 1..N .
Ei is initialized to an empty set in line 4, while Ri contains the
abstraction of the initial program states computed for the thread i .
The ARET computation is performed iteratively in the repeat loop,
see lines 5–27.

The first part of the loop (see lines 7–17) implements a standard,
least fixpoint computation over reachable states. At line 7, the
algorithm picks an already reachable states S ∈ Ri in order to
compute its abstract successors. After computing at lines 10–11
one successor of S , line 12 implements a fixpoint check, which
succeeds if S′ contains program states that have not been reached
yet. The new states reachable in thread i are stored in Ri . At
line 14, the function Parent is updated to keep track of the child-
parent relation between abstract states, while ParentTId maps the
new reachable state to its parent thread.

The second part of the loop (see lines 19–26) performs a least
fixpoint computation over environment transitions. Each time a
transition from a thread i is picked at line 7, the abstraction of its
effect computed in line 20 is propagated to each other thread j .
Note however, that the propagation only happens for environment
transitions that are not subsumed by the existing ones, which is
checked in line 21. Additional environment transitions are recorded
in line 22. Environment transitions are taken into consideration
when computing abstract state reachability, see line 9.

Upon termination, which is guaranteed by the finiteness of our
abstract domains, the function ABSTREACHENV computes sets
of abstract states R1, . . . ,RN and sets of environment transitions
E1, . . . , EN .

6. Abstraction refinement
Procedure REFINE In Figure 9, we present the procedure
REFINE that takes as argument an error tuple and, if possible, re-
fines the abstraction functions to include predicates that witness
the fact that the error state is unreachable. The procedure REFINE
generates a set of Horn clauses corresponding to the error tuple
(lines 1–4). Next, the REFINE algorithm invokes a solving proce-
dure for Horn clauses (lines 5–7). Lastly, the procedure REFINE up-
dates the abstraction functions using the solution of Horn clauses at
lines 8–12. We consider the solution SOL and add the atomic pred-
icates that appear in Sol(“S”(V) to the set of predicates Ṗi . The
index i is chosen to be that of the thread where S originated from.
Similarly, the procedure updates the transition abstraction functions
at line 12. Here, we only assume that SOLVEHC returns a cor-
rect solution to the set of Horn clauses received as argument. In

1
2
3
4
5
6
7
8
9
10
11
12

procedure REFINE

input
S1, . . . , SN - abstract error tuple

begin
HC := {“S1”(V) ∧ · · · ∧ “SN”(V) ∧ ϕerr → false}

∪ MKHORNCLAUSES(S1)

. . .

∪ MKHORNCLAUSES(SN)

SOL := SOLVEHC(HC,
{“S”(V) | i ∈ 1..N ∧ S ∈ Ri} ∪
{“ρ”(V, V ′) | i ∈ 1..N ∧ ρ ∈ Ei})

for each i ∈ 1..N and S ∈ Ri do
Ṗi := PredsOf (SOL(“S”(V))) ∪ Ṗi

for each j ∈ 1..N and ρ ∈ Ej do
i := ParentTId(ρ)

P̈i.j := PredsOf (SOL(“ρ”(V, V ′))) ∪ P̈i.j
end

Figure 9. Procedure REFINE. The quotation function “ ·” creates a
relation symbol from a given abstract state/abstract transition. The
function PredsOf extracts atomic predicates from the solutions to
the set of Horn clauses HC.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

function MKHORNCLAUSES

input
D - abstract state

begin
i := ParentTId(D)

return
match Parent(D) with
| (S, ρ) ->

MKHORNCLAUSES(S) ∪
begin

match Parent(ρ) with
| (O, ρO) ->

{“O”(V) ∧ ρO → “ρ”(V, V ′) ,

“S”(V) ∧ “ρ”(V, V ′) ∧ ρ=
i → “D”(V ′)}

∪ MKHORNCLAUSES(O)

| ⊥ -> {“S”(V) ∧ ρ→ “D”(V ′)}
end

| ⊥ -> {ϕinit → “D”(V)}
end

Figure 10. Function MKHORNCLAUSES.

Section 7, we present a solving algorithm for recursion-free Horn
clauses over the linear arithmetic domain.

Function MKHORNCLAUSES The generation of the Horn
clauses is started from lines 1–4 of Figure 9. One clause re-
quires that the solutions corresponding to the abstract states
from the error tuple do not intersect ϕerr : {“S1”(V) ∧ · · · ∧
“SN”(V) ∧ ϕerr → false} . The other clauses are generated by
invoking MKHORNCLAUSES(Si) for i ∈ 1..N . The function
MKHORNCLAUSES generates Horn clauses for transitions consid-
ered during ARET computation as follows. If the abstract state D
was produced by following a local transition, i.e., Parent(D) =

9
10
11
12
13
14
15

{“O”(VG, Vi) ∧ ρO → “ρ”(VG, V
′
G) ,

“S”(VG, Vi) ∧ “ρ”(VG, V
′
G) ∧

ρ=
i → “D”(V ′G, V

′
i)}

∪ MKHORNCLAUSES(O)

| ⊥ -> {“S”(VG, Vi) ∧ ρ→ “D”(V ′G, V
′
i)}

end
| ⊥ -> {ϕinit → “D”(VG, Vi)}

Figure 11. Modifications to MKHORNCLAUSES to admit only
modular solutions.

// Thread 1

x: cnt++;

assume(cnt >= 1);

a: take_lock(lock,1);

b: // critical

// Thread 2

p: take_lock(lock,1);

q: // critical

ϕinit = (pc1 = x ∧ pc2 = p ∧ lock = 0 ∧ cnt = 0)

ρ=
1 = (pc1 = pc1

′ ∧ cnt = cnt′)

ρ=
2 = (pc2 = pc2

′)

ρ0 = (pc1 = x ∧ pc1
′ = a ∧ lock = lock′ ∧

cnt + 1 = cnt′ ∧ 1 ≤ cnt′ ∧ ρ=
2)

ρ1 = (pc1 = a ∧ pc1
′ = b ∧ lock = 0 ∧ lock′ = 1 ∧

cnt = cnt′ ∧ ρ=
2)

ρ2 = (pc2 = p ∧ pc2
′ = q ∧ lock = 0 ∧ lock′ = 1 ∧ ρ=

1)

ϕerr = (pc1 = b ∧ pc2 = q)

Figure 12. LockBitCnt is an expanded version of the program
LockBit .

(S, ρ) and Parent(ρ) = ⊥ , then one Horn clause corresponds to
the application of the local transition at line 12: {“S”(V) ∧ ρ →
“D”(V ′)} . Additional Horn clauses are generated recursively for
the parent state S at line 5. If the abstract state D was produced
by following an environment transition, i.e., Parent(D) = (S, ρ)
and Parent(ρ) = (O, ρO) , then two Horn clauses correspond
to the generation of the environment transition (line 9) and to
the application of the environment transition (line 10). Finally, if
Parent(D) = ⊥ , then one Horn clause constrains the solution of
“D”(V) at line 14: {ϕinit → “D”(V)} . Note that solutions for
unknown states are expressed in terms of all program variables V ,
while solutions for unknown transitions are expressed in terms of
V and V ′ . Consequently, these solutions may lead to non-modular
proofs even for a set of Horn clauses that has modular solutions.

Discovery of Modular Predicates We present modifications to
our abstraction refinement algorithm that guarantee the discovery
of modular solutions whenever they exist. With these modifica-
tions, solutions for unknown states originating in thread i can only
be expressed in terms of VG, Vi rather than the whole set of pro-
gram variables V . Solutions for unknown transitions are restricted
to the set of global variables VG, V ′G . To implement these changes,
we change line 1 from the REFINE procedure as follows:

1 HC := {“S1”(VG, V1) ∧ · · · ∧ “SN”(VG, VN) ∧ ϕerr}
We also replace lines 9–14 from MKHORNCLAUSES with the frag-
ment shown in Figure 11. The rest of the function MKHORN-
CLAUSES is unchanged. If the resulting Horn clauses have no so-

lution, i.e., SOLVEHC throws an UNSATISFIABLE exception, then
it may still be possible that a non-modular solution exists. In this
case, we invoke the abstraction refinement once again, this time
generating Horn clauses using the unmodified function MKHORN-
CLAUSES from Figure 10.

Example We illustrate the generation of Horn clauses using an
expanded version of LockBit shown in Figure 12. This example
contains an additional variable cnt local to the first thread. The
initial symbolic state of the program ϕinit constrains both cnt and
lock to the value 0 . The transition relation of the first thread is
extended with ρ0, which increments cnt by 1 and assumes that
the incremented value is greater than or equal to 1 . Similar to the
example from Section 2, ϕerr encodes the violation of the mutual
exclusion property. We show in Figure 13(a) the reachability trees
as computed by the ARET computation. The error tuple consists of
m4 and n3 , i.e., m4 ∧ n3 ∧ ϕerr is satisfiable.

From this error tuple, MKHORNCLAUSES generates Horn
clauses following the procedure from Figure 10. These Horn
clauses are shown in Figure 13(b). The Horn clauses have un-
known states “m1”(V), “m2”(V), “m3”(V), “m4”(V), “n1”(V),
“n2”(V) , and “n3”(V) . The unknown transitions are “e1”(V, V ′)
and “e2”(V, V ′) .

Comparatively, we show in Figure 13(c) the Horn clauses gen-
erated with preference for modular solutions. The solutions for the
unknown states of thread 1 can refer only to (VG, V1) , while the
unknown states of thread 2 are restricted to (VG, V1) . The un-
known transitions are “e1”(VG, V

′
G) and “e2”(VG, V

′
G) .

THEOREM 4 (Progress of abstraction refinement). The procedure
REFINE guarantees progress of abstraction refinement, i.e., the
same set of Horn clauses is never discovered twice. �

7. Solving Horn clauses over linear inequalities
As presented in the previous section, REFINE calls the func-
tion SOLVEHC. In this section we present a function SOLVE-
LINEARHC that can be used as an implementation of SOLVEHC
takes as input a set of clauses HC over linear inequalities that is
recursion-free.

To simplify the presentation of the algorithm, we make two
additional assumptions on HC. First, we assume that for each
pair of clauses (. . .) → b(w) and (. . .) → b′(w′) from HC we
have b 6= b′ and b 6= (≤) 6= b′. Second, we assume that HC
contains a clause (. . .)→ false .

The additional assumptions are satisfied by the clauses gener-
ated in Section 6. In case SOLVELINEARHC is applied on a set
of recursion-free Horn clauses over linear arithmetic that violates
the two assumptions above, we can apply a certain renaming of re-
lation symbols and introduction of additional clauses to meet the
assumptions.

Function MKTREE The function MKTREE generates a tree rep-
resentation for a set of Horn clauses and is shown in Figure 15. For
every relation appearing in the Horn clauses, the algorithm gener-
ates a corresponding tree node. The children of a node are main-
tained in a function Children as follows. Nodes that correspond
to linear arithmetic relations have no children, see lines 11–12. A
node that corresponds to an unknown relation with a relation sym-
bol b has as children those nodes that represent relation symbols
that depend on b . The Label attribute of the tree nodes is initial-
ized to a linear arithmetic constraint for leaves of the tree in line 11,
and to an unknown relation for internal tree nodes in line 13.

Function SOLVELINEARHC See Figure 14 for the pseudocode
of the procedure SOLVELINEARHC . This procedure creates a tree
representation for HC at line 2. At line 3, we build a set containing

m1

m2

ρ0

m3

ρ1

m4

e2

n1

n2

ρ2

n3

e1

(a)

ϕinit → “m1”(V)

“m1”(V) ∧ ρ0 → “m2”(V ′)
“m2”(V) ∧ ρ1 → “m3”(V ′)
“m2”(V) ∧ ρ1 → “e1”(V, V ′)
“m3”(V) ∧ “e2”(V, V ′) ∧ ρ=1 → “m4”(V ′)

ϕinit → “n1”(V)

“n1”(V) ∧ ρ2 → “n2”(V ′)
“n1”(V) ∧ ρ2 → “e2”(V, V ′)
“n2”(V) ∧ “e1”(V, V ′) ∧ ρ=2 → “n3”(V ′)

“m4”(V) ∧ “n3”(V) ∧ ϕerr → false

(b)

ϕinit → “m1”(VG, V1)

“m1”(VG, V1) ∧ ρ0 → “m2”(V ′G, V
′
1)

“m2”(VG, V1) ∧ ρ1 → “m3”(V ′G, V
′
1)

“m2”(VG, V1) ∧ ρ1 → “e1”(VG, V ′G)

“m3”(VG, V1) ∧ “e2”(VG, V ′G) ∧ ρ=1 → “m4”(V ′G, V
′
1)

ϕinit → “n1”(VG, V2)

“n1”(VG, V2) ∧ ρ2 → “n2”(V ′G, V
′
2)

“n1”(VG, V2) ∧ ρ2 → “e2”(VG, V ′G)

“n2”(VG, V2) ∧ “e1”(VG, V ′G) ∧ ρ=2 → “n3”(V ′G, V
′
2)

“m4”(VG, V1) ∧ “n3”(VG, V2) ∧ ϕerr → false

(c)

1 : false

2 : “m4”(V 1)

3 : “m3”(V 2)

4 : “m2”(V 3)

5 : “m1”(V 4)

8 : ρ1(V 3, V 2)

7 : ρ0(V 4, V 3)

6 : ϕinit (V
4)

9 : “e2”(V 2, V 1)

10 : “n1”(V 2) 12 : ρ2(V 2, V 1)

11 : ϕinit (V
2)

13 : ρ=1 (V 2, V 1)

14 : “n3”(V 1)

15 : “n2”(V 5)

16 : “n1”(V 6) 18 : ρ2(V 6, V 5)

17 : ϕinit (V
6)

19 : “e1”(V 5, V 1)

20 : “m2”(V 5)

21 : “m1”(V 7)

24 : ρ1(V 5, V 1)

23 : ρ0(V 7, V 5)

22 : ϕinit (V
7)

25 : ρ=2 (V 5, V 1)

26 : ϕerr (V 1)

(d)

1 : 1 ≤ 0

2 : 1 ≤ 0

3 : 1 ≤ cnt2

4 : 1 ≤ cnt3

5 : 0 ≤ 0

8 :cnt3 ≤ cnt2

7 : 1 ≤ cnt3

6 : 0 ≤ 0

9 : cnt2 ≤ 0

10 : cnt2 ≤ 0 12 : 0 ≤ 0

11 : cnt2 ≤ 0

13 : 0 ≤ 0

14 : 0 ≤ 0

15 : 0 ≤ 0

16 : 0 ≤ 0 18 : 0 ≤ 0

17 : 0 ≤ 0

19 : 0 ≤ 0

20 : 0 ≤ 0

21 : 0 ≤ 0

24 : 0 ≤ 0

23 : 0 ≤ 0

22 : 0 ≤ 0

25 : 0 ≤ 0

26 : 0 ≤ 0

(e)

2 : “m4”(V 1
G, V

1
1)

3 : “m3”(V 2
G, V

2
1)

4 : “m2”(V 3
G, V

3
1)

5 : “m1”(V 4
G, V

4
1)

8 : ρ1(V 3
G, V

3
1 , V

IV
2 , V 2

G, V
2
1 , V

V
2)

7 : ρ0(V 4
G, V

4
1 , V

II
2 , V

3
G, V

3
1 , V

III
2)

6 : ϕinit (V
4
G, V

4
1 , V

I
2)

9 : “e2”(V 2
G, V

1
G)

10 : “n1”(V 2
G, V

2
2) 12 : ρ2(V 2

G, V
VI
1 , V 2

2 , V
2
G, V

VII
1 , V 1

2)

11 : ϕinit (V
2
G, V

VIII
1 , V 2

2)

13 : . . .

(f)

Figure 13. (a) Reachability trees constructed by ARET computation. (b) Corresponding Horn clauses generated using MKHORNCLAUSES.
(c) Horn clauses generated with preference for modular solutions. (d) A tree representation of the clauses from (b) as generated by MKTREE.
Each node shows its Label attribute. The superscript of the node name identifies the set of variables appearing in the attribute of the node.
(e) The Pred map generated by SOLVELINEARHC from the clauses in (b). (f) The Label map generated by MKHORNCLAUSES from the
clauses in (c).

all the Label attributes of leaf nodes and store this set in Atoms .
The input set of Horn clauses is satisfiable if and only if

∧
Atoms

is unsatisfiable. If
∧

Atoms is unsatisfiable, the test at lines 4–
5 succeeds and returns a proof of unsatisfiability in the form of
weights for each linear inequality. This test can be implemented
using some linear arithmetic constraint solver. If the constraint
solver fails to find a proof, an exception UNSATISFIABLE is thrown
at line 12.

At line 7, SOLVELINEARHC calls the procedure ANNOTPRED ,
which is presented in Figure 16. This procedure recursively tra-
verses the input tree in postorder. If this procedure is invoked for a
leaf node n , it directly computes the value of Pred(n) as a linear
combination of atomic formulas with weights given by the Proof
function (see line 2). If this procedure is invoked for an internal
node n , the attribute Pred of n’s children is computed using a re-
cursive call at line 5. After completing the recursive call, Pred(n)
is calculated by adding the values of the Pred attributes of n’s chil-
dren.

Since there may be multiple nodes in the tree corresponding
to the same unknown relation, the algorithm has to account for
the Pred attributes of all these nodes. Therefore, at lines 8–9 we
compute solutions for each b(w) in UnkRel by taking conjunction
of Pred of each node of the tree that is labeled with b(u) for
some u .

THEOREM 5. SOLVELINEARHC computes a solution for a set of
Horn clauses HC if and only if the conjunction of the clauses in HC
is satisfiable.

Example We illustrate the solving procedure using the same ex-
ample from the previous section. Given the Horn clauses from Fig-
ure 13(b), MKTREE constructs a tree that is shown in Figure 13(d).
This tree contains nodes which we label for convenience with iden-
tifiers from 1 to 26 . In Figure 13(d) we show the Label map of the
tree. A witness of the unsatisfiability of

∧
Atoms is given by the

following atomic formulas:

(cnt3 ≥ 1)∈

Label(7)

∧ (cnt3 = cnt2)∈

Label(8)

∧ (cnt2 = 0)∈

Label(11)

Our solver treats each linear equality as a conjunction of two linear
inequalities. The equality cnt2 = 0 is split in two inequalities
cnt2 ≤ 0 ∧ −cnt2 ≤ 0 . The proof of unsatisfiability is:

(1 ≤ cnt3) + (cnt3 ≤ cnt2) + (cnt2 ≤ 0) = (1 ≤ 0).

This is encoded in the Proof map with values of 1 at locations
corresponding to the three atomic formulas above and values of 0
for all the other atomic formula. Next, we show in Figure 13(e) the
values for the Pred map as computed by ANNOTPRED . The final
solution of the Horn clauses is built by a conjunction of the Pred
attributes for nodes with the same unknown label. The resulting
solution SOL is shown below.

SOL(“m1”(V)) = SOL(“n2”(V)) = (0 ≤ 0)

SOL(“e1”(V, V ′)) = = (0 ≤ 0)

SOL(“m2”(V)) = SOL(“m3”(V)) = (1 ≤ cnt)

SOL(“n1”(V)) = SOL(“e2”(V, V ′)) = (cnt ≤ 0)

Solving the clauses shown in Figure 13(c) Given the Horn
clauses shown in this figure, MKTREE returns a tree representa-
tion with a similar Children map structure but with different Label
attributes. The part of the tree that contributes to the proof of unsat-
isfiability is shown in Figure 13(f). The variable cnt2 does not ap-
pear in the subtree of the node 9 since Label(9) = “e2”(V 2

G, V
1
G) .

Part of this subtree is the node 11. Let us name the variable at this

1
2
3
4
5
6
7
8
9
10
11
12

function SOLVELINEARHC
input

HC - recursion-free Horn clauses over linear inequalities
UnkRel - unknown relations

vars
Label - map from node to attribute
Children - map from node to a set of nodes
Pred - map from node to an atomic predicate
Proof - weight function for inequalities

begin
Label := Children := ⊥ (∗ the empty function ∗)
root := MKTREE(false)

Atoms :=
⋃
{Label(n) | Children(n) = ∅}

if exists Proof : Atoms → Q≥0 such that∑
{Proof (b(u)) · b(u) | b(u) ∈ Atoms} = (1 ≤ 0)

then
ANNOTPRED(root)

for each b(w) ∈ UnkRel do
SOL(b(w)) :=

∧
{Pred(n)[w/u]|Label(n) = b(u)}

return SOL

else
throw UNSATISFIABLE

end

Figure 14. Function SOLVELINEARHC returns a solution for a set
of recursion-free Horn clauses over linear arithmetic.

node as cntVIII . The proof of unsatisfiability shown above does no
longer hold, since the following formula is satisfiable:

(1 ≤ cnt
3) ∧ (cnt3 = cnt

2) ∧ (cntVIII = 0)

However, the conjunction of the elements from the Atoms set is
still unsatisfiable, indicating that a modular solution exists. We find
that the following atoms contribute to a proof of unsatisfiability:

lock2 = 1∈

Label(8)

∧ lock2 = 0∈

Label(12)

After splitting the equalities in equivalent inequalities, our algo-
rithm computes the following solution:

Pred(8) = (1 ≤ lock2) Pred(12) = (lock2 ≤ 0)
Pred(3) = (1 ≤ lock2) Pred(9) = (lock2 ≤ 0)
Pred(2) = (1 ≤ 0)

From this Pred map, our algorithm derives a solution SOL in lines
8–9 and succeeds in computing modular predicates.

8. Experimental results
In this section, we describe a proof-of-concept implementation
of our proposed algorithm as an extension of the model checker
ARMC [29].

Tool description The verifier we built takes as input a number
of functions (written in the C language) representing threads that
should execute concurrently. The input file also contains the de-
scription of an initial state and a number of assertions to be proven
correct. Our tool uses a frontend based on the CIL infrastructure
[25] to translate a C program to its corresponding multi-threaded
transition system that is formalized in Section 3. The main compo-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

function MKTREE

input
g - relation, either b(u) or false

begin
p, q := new nodes
match g with
| false ->

{b1(w1) ∧ · · · ∧ bn(wn)→ false, . . . } := HC
z1, . . . , zn := fresh copies of w1, . . . , wn
σ := [z1/w1] · · · [zn/wn]

| b(u) ->

{b1(w1) ∧ · · · ∧ bn(wn)→ b(w), . . . } := HC
z1, . . . , zn, z := fresh copies of w1, . . . , wn, w

σ := [z1/w1] · · · [zn/wn][u/z]

Label(p) := {bi(wi)σ | i ∈ 1..n ∧ bi = (≤)}
Children(p) := ∅
Label(q) := g

Children(q) :=
{p} ∪

⋃
{MKTREE(bi(wi)σ) | i ∈ 1..n ∧ bi 6= (≤)}

return q
end

Figure 15. Function MKTREE. Fresh copies are created con-
sistent, e.g., fresh copies of {v1, v2}, {v3, v1} returns {f1, f2},
{f3f1}, where f1, f2, f3 are fresh variables that do not appear
anywhere else.

1
2
3
4
5
6

procedure ANNOTPRED

input
n - node of Horn tree

begin
if Children(n) = ∅ then

Pred(n) :=
∑
{Proof (b(u))·b(u) | b(u) ∈ Label(n)}

else
for each n′ ∈ Children(n) do

ANNOTPRED(n′)

Pred(n) :=
∑
{Pred(n′)|n′ ∈ Children(n)}

end

Figure 16. Procedure ANNOTPRED.

nent of our tool is an implementation of our algorithm done using
SICStus Prolog [33].

An important design decision in our implementation concerns
the treatment of control-location and data variables. Even if both
control-location variables and data variables can be handled uni-
formly by our algorithm, we found that different abstraction do-
mains and refinement for the two domains can lead to significant
improvement. In our implementation, the REFINE procedure first
splits the constraints into data variable constraints and control-
location constraints. The splitting procedure preserves satisfiabil-
ity/unsatisfiability of the original constraint since there is no atomic
formula in the program transitions that relates both control vari-
ables and data variables. If the data constraints are satisfiable, the
algorithm proceeds as in Figure 9. If the data constraints are un-
satisfiable, our implementation relies on a specialized refinement
procedure (described in [13]) that takes advantage of the simpler

form of control counterexamples. For these counterexamples, con-
trol variables range over a finite domain and no atomic formula
from the program transitions involves different control variables.

Benchmark programs We tested our prototype implementation
using a collection of programs that have intricate correctness proofs
for their safety assertions. The first four programs shown in Ta-
ble 1 are derived from two buggy examples highlighted as figures
in [20], together with their fixes from the MOZILLA CVS reposi-
tory. The property to verify is that two operations performed by dif-
ferent threads are executed in the correct order. The next three ex-
amples model the stopping procedure of a Windows NT Bluetooth
driver [30]. BLUETOOTH2 contains two threads, one worker thread
and another thread to model the stopping procedure of the driver.
BLUETOOTH2-FIXED and BLUETOOTH3-FIXED are the fixed ver-
sions of the model with two and respectively three threads. SCULL
[6] is a Linux character device driver that implements access to a
global memory area. The property to verify is that read and write
operations are performed in critical section.

We also include some examples which are not particularly fa-
vorable to a modular reasoning approach. These examples are al-
gorithms that establish mutual exclusion and mainly deal with
global variables (no local computation is included in the critical
region). The mutual exclusion property of the naı̈ve version of the
Bakery algorithm [22] holds only when assuming assignments are
performed atomically. (Our verifier was able to confirm the bug
present in the code without such atomicity assumption.) BAKERY
[18] is the complete version of the Bakery algorithm, while LAM-
PORT [19] is an algorithm with an optimized path in the absence of
memory contention. QRCU [23] is an algorithm implementing the
Read-copy-update synchronization algorithm. It is an alternative to
a readers-writer lock having wait-free read operations.

Performance of our tool To explain our experimental results, we
first articulate a working hypothesis. This hypothesis suggests that,
when verifying a program that does not have a modular proof, the
algorithm with preference for modular solutions (denoted as ver-
ification with bias) is expected to pay a penalty by insisting to
search for modular solutions that do not exist. On the other hand,
for cases where a modular proof does exist, the non-biased verifi-
cation could fail to find a modular proof and instead return a more
detailed non-modular proof. Therefore, the hypothesis suggests that
in these cases the biased verification is expected to succeed faster
compared to the non-biased verification.

We report statistical data for each of the programs in Table 1.
We show the number of lines of code (LOC) and whether a modu-
lar proof exists for a program (see Column 3). Our implementation
has two modes. Column 4 shows the verification results, when us-
ing our algorithm with a preference for modular solutions. The last
column of the table shows the verification results for the non-biased
implementation of our algorithm. The results demonstrate that our
approach to verification of multi-threaded programs is feasible and
that the constraint solving procedure with bias is able to produce
modular proofs more often than the non-biased verification. Fur-
thermore, without the bias, the verification procedure times-out for
Scull and QRCU examples showing the benefits of modular proofs.

As another experiment, we tested some of our smaller exam-
ples using two state-of-the-art model checkers for sequential C pro-
grams, Blast [14] and ARMC[31]. For each of the tested programs
(Fig2-fixed, Fig4-fixed, Dekker, Peterson, and Lamport), we instru-
mented the program counter as explicit program variables (pc1 and
pc2) and obtained a sequential model of the multi-threaded exam-
ples. Both Blast and ARMC eagerly consider all interleavings and
obtained timeouts after 30 minutes for both Fig4-fixed and Lam-
port. Comparatively, our tool exploits the thread structure of these
programs and obtains conclusive verification results fast.

Benchmark programs Our algorithm
Name LOC Has a modular proof? With bias No bias

Fig2-cex[20] 33 No × 0.2s × 0.2s
Fig2-fixed[20] 38 Yes X-Modular 0.8s X-Modular 0.7s
Fig4-cex[20] 175 No × 4.5s × 3.7s
Fig4-fixed[20] 168 Yes X-Modular 1.5s X 11.1s
Bluetooth2[30] 90 No X 29.1s X 11.2s
Bluetooth2-fixed 90 No X 3.7s X 0.4s
Bluetooth3-fixed 90 No X 135s X 9.7s
Scull[6] 451 Yes X-Modular 128.5s T/O

Dekker[1] 39 No X 11.1s X 6s
Peterson[1] 26 No X 4.7s X 3.9s
Readers-writer-lock[10] 22 Yes X-Modular 0.2s X 0.4s
Time varying mutex[10] 29 No X 11.8s X 3.1s
Szymanski[32] 43 No X 32s X 8.8s
Naı̈veBakery[22] 22 Yes X-Modular 2.5s X 3s
Bakery[18] 37 No X 105.4s X 101s
Lamport[19] 62 No X 120.8s X 97s
QRCU[23] 120 Yes X-Modular 34.5s T/O

Table 1. “Has a modular proof?” indicates whether the program has a modular proof of correctness. “X” and “×” indicate whether the
program is proven safe or a counterexample is returned, while “T/O” stands for time out after 15 minutes. X-Modular indicates that a
modular proof is found by our tool.

9. Related work
The main inspiration for our work draws from the rely-guarantee
reasoning method [16, 17] and automatic abstraction refinement
approach to verification [4].

The seminal work on rely-guarantee reasoning [16, 17] initially
offered an approach to reason about multi-threaded programs by
making explicit the interference between threads. Subsequently,
rely-guarantee reasoning was used to tackle the problem of state ex-
plosion in verification of multi-threaded programs. Rely-guarantee
reasoning was mechanized and firstly implemented in the Calvin
model checker [10] for Java shared-memory programs. Calvin re-
duces the verification of the multi-threaded program to the verifica-
tion of several sequential programs with the help of a programmer
specified environment assumption. In [9], thread-modular model
checking was proposed to infer automatically environment assump-
tions that propagate only global variable changes to other threads.
The algorithm has low complexity, polynomial in the number of
threads, but is incomplete and fails to discover environment as-
sumptions that refer to the local states of a thread. Thread-modular
verification is formalized by [21] in the framework of abstract in-
terpretation as Cartesian product of sets of states.

The method of [15] uses a richer abstraction scheme that com-
putes contextual thread reachability, where the context in which a
thread executes includes information on both global and local states
of threads. The context (or environment) is computed using bisim-
ilarity quotients in steps that are interleaved with abstract reacha-
bility computations. The verification starts with the strongest pos-
sible environment assumption and, by refinement, the environment
is weakened until it over-approximates the transitions of the other
threads. In contrast, our approach refines iteratively the environ-
ment based on over-approximation, starting with the weakest en-
vironment and strengthening it at every iteration. For abstraction
refinement, a counterexample from [15] is reduced to a concrete

sequential path by replacing environment transitions with their cor-
responding local transitions.

The approach of [5] presents another solution to overcome the
incompleteness of local reasoning. Guided by counterexamples, it
refines the abstraction by exposing a local variable of a thread as
a global variable. This refinement recovers the completeness of
reasoning, but is applicable to finite-state systems and may compute
an unnecessarily precise abstraction. In contrast, our refinement
procedure relies on interpolation and includes predicates on local
variables as needed during verification.

Another approach to overcome the state explosion problem of
monolithic reasoning over multi-threaded programs is to translate
the multi-threaded program to a sequential program assuming a
bound on the number of context switches. This scheme was initially
proposed and implemented in KISS [30], a multi-threaded checker
for C programs, and later evolved to handle and reproduce even dif-
ficult to find Heisenbugs [24]. Monolithic reasoning can be greatly
facilitated by using techniques evolved from partial-order reduction
[11], like dynamic partial-order reduction [8] or peephole partial
order reduction [34]. Yet another technique to fight state explosion
is to factor out redundancy due to thread replication as proposed
in counter abstraction [27] and implemented in the model checker
Boom [2, 3]. We view these techniques as paramount in obtaining
practical multi-threaded verifiers, but orthogonal to our proposal
for automatic environment inference.

Acknowledgments
The first author was supported by the DFG Graduiertenkolleg 1480
(PUMA). We thank Byron Cook, Ruslán Ledesma Garza, and Peter
O’Hearn for comments and suggestions.

References
[1] Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual

exclusion algorithms. In DISC, pages 136–150, 2003.

[2] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening. Symbolic counter
abstraction for concurrent software. In CAV, pages 64–78, 2009.

[3] G. Basler, M. Hague, D. Kroening, C.-H. L. Ong, T. Wahl, and
H. Zhao. Boom: Taking boolean program model checking one step
further. In TACAS, pages 145–149, 2010.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154–
169, 2000.

[5] A. Cohen and K. S. Namjoshi. Local proofs for global safety proper-
ties. FMSD, 34(2):104–125, 2009.

[6] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,
3rd Edition. O’Reilly Media, Inc., 2005.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL, pages 238–252, 1977.

[8] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

[9] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN,
pages 213–224, 2003.

[10] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification
for shared-memory programs. In ESOP, pages 262–277, 2002.

[11] P. Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems - An Approach to the State-Explosion Problem. PhD the-
sis, University of Liege, Computer Science Department, 1994.

[12] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In CAV, pages 72–83, 1997.

[13] A. Gupta, C. Popeea, and A. Rybalchenko. Non-monotonic refinement
of control abstraction for concurrent programs. In ATVA, pages 188–
202, 2010.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL, pages 58–70, 2002.

[15] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context
inference. In PLDI, pages 1–13, 2004.

[16] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Trans. Program. Lang. Syst., 5(4):596–619,
1983.

[17] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[18] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[19] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput.
Syst., 5(1):1–11, 1987.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In ASPLOS, pages 329–339, 2008.

[21] A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verifi-
cation is cartesian abstract interpretation. In ICTAC, pages 183–197,
2006.

[22] Z. Manna and A. Pnueli. Temporal verification of reactive systems:
safety. Springer-Verlag, 1995.

[23] P. McKenney. Using Promela and Spin to verify parallel algorithms.
LWN.net weekly edition, 2007.

[24] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-
grams. In OSDI, pages 267–280, 2008.

[25] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In CC, pages 213–228, 2002.

[26] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Inf., 6:319–340, 1976.

[27] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter
abstraction. In CAV, pages 107–122, 2002.

[28] A. Podelski and A. Rybalchenko. Transition predicate abstraction and
fair termination. In POPL, pages 132–144, 2005.

[29] A. Podelski and A. Rybalchenko. ARMC: The logical choice for
software model checking with abstraction refinement. In PADL, pages
245–259, 2007.

[30] S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI,
pages 14–24, 2004.

[31] A. Rybalchenko. The ARMC tool. Available from
http://www7.in.tum.de/˜rybal/armc/.

[32] B. K. Szymanski. A simple solution to Lamport’s concurrent program-
ming problem with linear wait. In ICS, pages 621–626, 1988.

[33] The Intelligent Systems Laboratory. SICStus Prolog User’s Manual.
Swedish Institute of Computer Science, 2001. Release 3.8.7.

[34] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial order
reduction. In TACAS, pages 382–396, 2008.

