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Abstract. Verification based on abstraction refinement is a successful
technique for checking program properties. Conventional abstraction re-
finement schemes increase precision of the abstraction monotonically,
and therefore cannot recover from overly precise refinement decisions.
This problem is exacerbated in the context of multi-threaded programs,
where keeping track of all control locations in concurrent threads is the
inevitably discovered abstraction and is prohibitively expensive. In con-
trast to the conventional (partition refinement-based) approaches, non-
monotonic abstraction refinement schemes rely on re-partitioning and
have promising potential for avoiding excess of precision. In this paper,
we propose a non-monotonic refinement scheme for the control abstrac-
tion (of concurrent programs). Our approach employs a constraint solver
to discover re-partitioning at each refinement step. An experimental eval-
uation of our non-monotonic control abstraction refinement on a collec-
tion of multi-threaded verification benchmarks indicates its effectiveness
in practice.

1 Introduction

Automatic abstraction [10] is one of the essential components for the construction
of software verification tools. The success of verification tools based on abstract
domains equipped with widening operators, e.g., ASTREE [5], Clousot [13],
and Dagger [17], and software model checkers based on predicate abstraction,
e.g., SLAM/SDV [3], Blast [21], Magic [6], F-Soft [23], Terminator [9], and
ARMC [30], demonstrates the effectiveness of abstraction in practice. Finding
the right abstraction is a difficult task, since a too coarse abstraction may lead
to inconclusive verification results and, on the other hand, excess of precision
may impose a prohibitive efficiency penalty. In practice, the desired level of
details tracked during the abstraction process is determined through a trial-
and-error like process that adjusts abstraction at each failed verification at-
tempt. The existing refinement methods can automatically tune precision of var-
ious abstraction techniques, including infinite abstract domains equipped with
widening operators, e.g., [11, 17], and finitary predicate abstraction domains,
e.g., [1, 4, 7, 21,22].

One of the most important properties of the iterative abstraction discovery
approaches is called progress of refinement. This property ensures that the ver-
ification effort does not get stuck in a loop trying to eliminate the same reason



for imprecision over and over again. The majority of existing approaches achieve
the progress of refinement by adjusting abstraction monotonically. That is, they
compute a proper refinement of abstraction at each adjusting step. For exam-
ple, when using predicate abstraction such monotonic refinement can be easily
achieved by adding appropriate predicates to the abstract domain [1,7,21,22,24].

While monotonic refinement approaches are well-studied and widely applied,
the monotonicity property can lead to overly precise abstraction and hence

(b)
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Fig. 1. Abstraction sets of program states using
equivalence classes. Boxes denote equivalence classes.

unnecessarily slow down
verification. In fact,
monotonicity is just one
possible way to achieve
refinement progress and
alternative approaches
have started to emerge.
As an example, con-
sider two sequences of
abstraction adjustments
shown in Figure 1.
The sequence (a) uses
a monotonic scheme
that creates a properly
refined partition at each adjustment step. Assume that after making the first
adjustment the verifier recognizes that a re-partitioning following the sequence
(b) yields an abstraction that is sufficiently precise to prove the property. While
not admissible in monotonic refinement scheme, (b) can be achieved using a
non-monotonic refinement scheme, which would lead to more efficient verifica-
tion that considers two instead of four equivalence classes. The potential of such
non-monotonic refinement schemes has been identified in recent verification
efforts. In a seminal paper [29], a non-monotonic scheme is used to discover a
localization abstraction which is improved based on proofs of unsatisfiability. A
second related work describes a method for computing an optimal localization
abstraction from a collection of broken traces [19]. These approaches led to
effective verification methods able to recover from overly precise abstraction
decisions.

In this paper, we apply a non-monotonic abstraction refinement scheme for
the control-flow abstraction of multi-threaded programs. Abstraction of control-
flow deals with program counter variables that range over finite sets of control
locations of program threads, and is a crucial building block for achieving scal-
able reasoning about concurrent programs [8, 15]. In our experience, monotonic
abstraction results in too fine grained partitioning of control locations into equiv-
alence classes and hence is too expensive.

The main component of our scheme is a procedure that takes as input a
set of program paths that were the root cause for failed verification attempts
so far (including the current evidence for inadequacy of chosen abstraction) and
returns a set of predicates that eliminates all these failures. The abstract domain
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int t1 = 0, t2 = 0; // ticket variables

bool choosing1 = 0, choosing2 = 0; // boolean flags

int x; //variable to update in critical section

void thr1() {

int tmp;

1 choosing1 = 1;

2 tmp = t2 + 1;

3 t1 = tmp;

4 choosing1 = 0;

5 while (choosing2 != 0);

6 while (t1 >= t2 && t2 != 0);

// begin: critical section

7 x = 0;

8 assert(x <= 0);

// end: critical section

9 t1 = 0;

10 }

void thr2() {

int tmp;

11 choosing2 = 1;

12 tmp = t1 + 1;

13 t2 = tmp;

14 choosing2 = 0;

15 while (choosing1 != 0);

16 while (t2 >= t1 && t1 != 0);

// begin: critical section

17 x = 1;

18 assert(x >= 1);

// end: critical section

19 t2 = 0;

20 }

Fig. 2. An implementation of Lamport’s Bakery algorithm.

is adjusted by replacing the previously used set of predicates by the output of the
above procedure (and not adding predicates as in conventional CEGAR-based
approaches). More specifically, our algorithm crucially relies on a repartitioning
step encoded as a SAT problem.

We implemented the two schemes for abstraction refinement and observed
on a set of multi-threaded examples that non-monotonic refinement enables an
improvement in the verification time ranging from 18% to 52% when compared
to a monotonic refinement scheme.

In summary, our contributions are a non-monotonic abstraction refinement
algorithm for control-flow abstraction, its implementation and experimental eval-
uation.

2 Example

In this section, we illustrate our approach on Lamport’s Bakery algorithm, which
is a classic verification benchmark. We use the complete version of the algorithm
[25] with a set of Boolean flags (choosing1 and choosing2) where the reading
and the incrementing of the ticket variable is done non-atomically (see lines 2
and 3). We are interested in verifying that the Bakery algorithm achieves mutual
exclusion. This safety property is instrumented in Figure 2 using a global variable
x in the critical section of the two threads. We want to prove that no interleaving
of the threads leads to an assertion violation at either line 8 or 18.

To prove the program correct, our algorithm performs a combination of stan-
dard abstract reachability computation and non-monotonic abstraction refine-
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ment. Abstract states represent sets of concrete program states. If the reacha-
bility computation finds an error state to be reachable, we analyze the reason
for the failure and update the abstraction, if possible.

For our example, a reason for failure to prove safety is the following inter-
leaving of statements from first and second threads

(1, 2, 3, 4, 5,︸ ︷︷ ︸
thr1

13,︸︷︷︸
thr2

6, 7,︸︷︷︸
thr1

17,︸︷︷︸
thr2

8︸︷︷︸
thr1

),

where we identify program statements by the corresponding line numbers. This
counterexample is in fact infeasible, and is discovered due to abstraction. Two
different reasons make this counterexample infeasible:

– the first statement executed from the second thread cannot be 13,
– the statement 13 cannot be followed in the second thread by the state-

ment 17.

The mismatches between the program locations that lead to the infeasibility
of the counterexample are denoted using the following notation: (11 6≡ 13),
(14 6≡ 17). An abstraction function that maps the concrete program locations 11
and 13 to different abstract program locations will be able to avoid this coun-
terexample in subsequent reachability iterations. Similarly, this counterexample
can be avoided if the concrete locations 14 and 17 map to different abstract
locations (14 6≡ 17).

Let us assume that the refinement procedure picks the first possibility. The
resulting abstraction function can be represented using the following partition of
program locations: {11}, {13}, PC2\{11, 13}, PC1. PC1 and PC2 represent the
sets of all program locations from the first and, respectively, second thread.

A subsequent reachability computation finds another counterexample
that can be shown infeasible with the following mismatch relation, 12 6≡
16. To avoid this counterexample, the partitioning of the locations is
updated to {11, 12}, {13, 16}, PC2\{11, 12, 13, 16}, PC1. With a third mis-
match relation 11 6≡ 12, the program locations are again repartitioned to
{11, 16}, {12, 13}, PC2\{11, 12, 13, 16}, PC1. Note that these repartitionings are
possible only with a non-monotonic abstraction refinement scheme. The standard
monotonic refinement would compute a more fine-grained partitioning that is
unnecessarily precise and leads to expensive abstract reachability computations.
Overall, the verification of the Bakery example using non-monotonic abstraction
refinement concludes after 26 seconds and computes a 10-way partitioning of
control locations.

The monotonic abstraction refinement concludes after 54 seconds. The mis-
match 11 6≡ 13 and the second mismatch 12 6≡ 16 lead immediately to the parti-
tioning {11}, {12}, {13}, {16}, PC2\{11, 12, 13, 16}, PC1. Through all the reach-
ability iterations, the control locations are split into 14 partitions and this large
number explains the increased verification time based on monotonic abstraction
refinement.
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3 Preliminaries

In this section we define programs and computations, and provide a brief descrip-
tion of predicate abstraction-based approach to program verification together
with a standard counterexample-guided abstraction refinement procedure.

Programs and computations We assume an abstract representation of pro-
grams by transition systems [27]. A program P = (Σ, sI , T , sE) is given by a
set of program states Σ, an initial state sI ∈ Σ, a set of transitions T , and
an error state sE ∈ Σ. Each transition τ ∈ T has a corresponding transition
relation ρτ ⊆ Σ×Σ. The error state sE is used to represent assertion statements
commonly present in programming languages. Each failed assertion leads to sE .

A computation of P is a sequence of states s1, s2, . . . such that s1 is the
initial state, i.e., s1 = sI , and there is a transition τ ∈ T between each pair of
consecutive states s and s′, i.e., (s, s′) ∈ ρτ . A state s is reachable if it appears
in some computation. The program is safe if the error state is not reachable in
any computation.

A path is a sequence of transitions. Let ◦ be the relational composition
function for binary relation over states, i.e., for X,Y ⊆ Σ × Σ we have
X ◦ Y = {(s, s′) | ∃s′′ ∈ Σ : (s, s′′) ∈ X ∧ (s′′, s′) ∈ Y }. Then, a path rela-
tion ρπ is a relational composition of transition relations along the path, i.e., for
π = τ1 . . . τn we have ρπ = ρτ1 ◦ · · · ◦ ρτn

. A path is feasible if its path relation
is not empty.

Predicate abstraction Our goal is to verify whether a given program is safe.
To achieve this goal we need to consider all reachable program states and check
if the error state appears among them. The set of all reachable states can be
computed iteratively using the function post : (T × 2Σ)→ 2Σ such that

post(τ, S) = {s′ | ∃s ∈ S : (s, s′) ∈ ρτ} .

Its least fixed point above {sI} is the set of reachable states, i.e.,

s is reachable if and only if s ∈ lfp(λS.
⋃
τ∈T

post(τ, S), {sI}) .

The exact computation of the set of reachable states is an undecidable problem,
however for the verification purposes a sufficiently close abstraction is enough.
The framework of abstract interpretation [10] provides a formal foundation for
the approximate, yet sound abstraction of reachable states, where abstraction is
defined as an over-approximation. Given an abstraction function α : 2Σ → 2Σ

such that
∀S ⊆ Σ : S ⊆ α(S) ,

we construct an abstraction post# of post as follows:

post#(τ, S) = α(post(τ, S)) .
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Our abstraction puts together and operates on sets of program states. We call
such sets abstract states and let Σ# = 2Σ be the set of all abstract states.

The least fixed point of post# above the abstraction of the initial state is an
over-approximation of the reachable states, i.e.,

lfp(λS.
⋃
τ∈T

post#(τ, S), α({sI})) ⊇ lfp(λS.
⋃
τ∈T

post(τ, S), {sI}) .

If the error state is not included in the over-approximation then the program
is safe, that is, we obtain a sound method for verifying program safety. For
completeness of presentation, Appendix A contains an algorithm for abstract
fixpoint checking together with the re-construction of counterexamples, which is
required by our refinement scheme.

The abstraction function α can be constructed automatically from a given set
of basic building blocks, called predicates, where a predicate represents a set of
program states. Given a set of predicates P = {P1, . . . , Pn}, where Pi ⊆ Σ, and a
theorem prover that can decide validity of subset inclusion between sets of states
represented in a logical language, we use an abstraction function αP : 2Σ → 2Σ

which returns the strongest conjunction of the predicates implied by S as follows.

αP(S) = ∩{P ∈ P | S ⊆ P}

Abstraction refinement In order to verify program safety using predicate
abstraction, we need to supply a set of predicates. Predicates can be provided
manually, collected from the program text by applying heuristics, or derived in
a goal-oriented way by using the counterexample-guided abstraction refinement
approach [7]. The crux of this approach to predicate discovery lies in leveraging
spurious counterexamples, which are program paths that expose the coarseness
of the abstraction function determined by the currently used set of predicates.

A path π = τ1 . . . τn is a spurious counterexample if the abstract reachability
computation along the path leads to the error states, i.e.,

sE ∈ post#(τn, post#(τn−1, . . . post#(τ1, αP({sI}))) ,

but the actual, not abstracted path does not lead to the error state, i.e.,
(sI , sE) 6∈ ρπ. Conventional techniques for analyzing spurious counterexamples
use automated reasoning approaches , e.g., proofs [22] and interpolation [21], to
extract a set of new predicates that excludes the spurious counterexample.

We define an auxiliary predicate SafeInd that takes as input a sequence of
predicates of length n + 1 and a sequence of program transitions of length n,
where n ≥ 1, as follows.

SafeInd(ϕ0 . . . ϕn, τ1 . . . τn) = sI ∈ ϕ0 ∧ sE 6∈ ϕn ∧
∀i ∈ 1..n :

∧
i∈1..n post(τi, ϕi−1) ⊆ ϕi

Given a spurious counterexample τ1 . . . τn, we say that the sequence of predicates
ϕ0 . . . ϕn excludes the counterexample if SafeInd(ϕ0 . . . ϕn, τ1 . . . τn) holds. We
will use SafeInd in our non-monotonic refinement scheme.
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1
2
3
4
5

function NonMonRefine
input

Paths : spurious counterexamples so far
π : current spurious counterexample

begin
choose P such that
∀τ1 . . . τn ∈ {π} ∪ Paths
∃ϕ0, . . . , ϕn ⊆ P :

SafeInd(ϕ0 . . . ϕn, τ1 . . . τn)
return P

end

1
2
3
4
5
6
7
8
9
10
11
12

procedure NonMonCEGAR
input
P : program

vars
P : abstraction predicates
Paths : spurious counterexamples so far

begin
P := ∅
Paths := ∅
repeat

match FindCounterexample(P,P) with
| Some π ->

if ρπ = ∅ then
P := NonMonRefine(Paths, π)
Paths := {π} ∪ Paths

else
return “Counterexample π to program safety”

| None ->

return “Program is safe”
end.

Fig. 3. Predicate abstraction-based algorithm for checking program safety that is based
on the non-monotonic abstraction refinement scheme.

4 Non-monotonic refinement scheme

In this section we present an abstraction refinement scheme that adjusts abstrac-
tion in a non-monotonic way. By not committing to a monotonic evolution of
the abstraction, we can obtain a greater choice of possible refinement steps and
hence can reach more favorable efficiency/precision trade-offs.

See Figure 3 for an algorithm NonMonCEGAR that implements a safety
verification procedure based on counterexample guided abstraction refinement
using the non-monotonic refinement NonMonRefine. The algorithm Non-
MonCEGAR crucially differs from a conventional CEGAR algorithm by keep-
ing the history of discovered counterexamples, as stored in the variable Paths.
Every time an infeasible counterexample π is found, see lines 4–6, the set of pre-
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viously discovered counterexamples π together with the current one is passed to
NonMonRefine. The function NonMonRefine in our scheme chooses a set
of predicates P that excludes all counterexamples discovered so far. In Section 5
we present an instantiation of NonMonRefine for control-flow abstraction that
uses an encoding into SAT to implement lines 1–4 of NonMonRefine.

NonMonCEGAR overwrites the set of abstraction predicates P using the
result of calling NonMonRefine on the current set of counterexamples. At this
step, non-monotonicity takes place. Note however that the progress of refinement
is guaranteed, as formalized by the theorem below.
Theorem 1 (Progress of refinement in NonMonCEGAR). The algo-
rithm NonMonCEGAR never discovers the same counterexample twice, i.e.,
for given values of P and Paths we have that if π ∈ Paths then π 6∈
FindCounterexample(P,P).

5 Non-monotonic refinement for control-flow abstraction

In this section we present an application of the non-monotonic abstraction refine-
ment scheme to control-flow abstraction for concurrent programs. Our algorithm
for the verification of multi-threaded programs [20] relies on the abstraction of
control-flow, i.e., over-approximation of set of control locations in which threads
can be residing. This abstraction plays a crucial role for enabling scalable reason-
ing in the multi-threaded setting. Our experiments with a conventional mono-
tonic abstraction refinement procedure for dealing with control-flow abstraction
were not satisfactory. The refinement process was creating as many individual
abstract values as there are control locations, which subverted the application
of abstraction by effectively making the abstraction function to be an identity
function. In this section, we only present the non-monotonic control abstraction
refinement and refer to [20] for its client algorithm.

We assume a multi-threaded program that consists of N threads whose con-
trol locations are given by the set L. For each thread i ∈ 1..N we use a variable
pci and its primed version pc′i to refer to the corresponding program counter
value. We consider counterexamples given by sequences of transitions whose
transition relations are of the form

pci = ` ∧ pc′i = `′ ∧
∧

j∈1..N\{i}

pcj = pc′j ,

where ` and `′ are control locations. This transition relation corresponds to a
step of the thread i, whereas each other thread j ∈ 1..N \ {i} idles and hence
does not change its control location. We assume a function from : T → L that
given a transition τ returns its start location, which ` for the transition relation
above.

For example, the counterexample π = τ1τ2τ3τ4τ5τ13τ6τ7τ17τ8 presented in
Section 2 involves the following transition relations:

ρi =

{
pc1 = i ∧ pc1 = i+ 1 ∧ pc2 = pc′2 , for i ∈ {1, . . . , 8} ,
pc1 = pc′1 ∧ pc2 = i ∧ pc′2 = i+ 1 , for i ∈ {13, 17} .
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1
2
3
4
5
6
7
8
9
10

11

12
13
14
15
16
17
18
19
20

function NonMonControlRefine
input

Paths : spurious counterexamples so far
vars
Φ, Ψ : auxiliary constraints
m : number of partitions
B : auxiliary propositional variables
bits : encodes equivalence classes of control locations as bit strings

begin
m := 2
repeat

B := ∅
for each ` ∈ L do

b1 . . . bdlog2(m)e := fresh propositional variables
B := {b1, . . . , bdlog2(m)e} ∪B
bits(`) := b1 . . . bdlog2(m)e

Φ := true
for each π = τ1 . . . τn ∈ Paths do

Ψ := false
for each k ∈ 0..n and i ∈ 1..N and j ∈ 1..n− k+ 1 and ` ∈ L such that

SafeInd(true . . . true︸ ︷︷ ︸
k times

pci = ` . . . pci = `︸ ︷︷ ︸
j times

false . . . false︸ ︷︷ ︸
n−k−j+1 times

, π)

do
`′ := if k + j = n+ 1 then sE(pci) else from(τk+j)
Ψ := Ψ ∨ bits(`) 6= bits(`′)

Φ := Ψ ∧ Φ
m := m+ 1

until exists σ : B → {true, false} such that |= σ(Φ)
for each ` ∈ L do

f≡(`) := {`′ ∈ L | σ(bits(`)) = σ(bits(`′))}
return f≡

end.

Fig. 4. Function NonMonControlRefine implements an instantiation of the non-
monotonic refinement scheme to control-flow abstraction. The application σ(bits(`))
computes a bit string by replacing propositional variables from bits(`) by their values
as determined in σ.

9



The transitions have the following starting locations:

from(τi) = i , for i ∈ {1, . . . , 8, 13, 17}.

Our goal is to compute an equivalence relation ≡ on L that leads to absence
of abstract counterexamples. We represent the equivalence relation by a char-
acteristic function f≡ : L → 2L from control locations to equivalence classes.
The equivalence classes of this relation are used as predicates defining control
abstraction for a thread i ∈ 1..N , i.e.,

α(S) = ∪{f≡(`) | (S ∩ (pc1 = ` ∪ · · · ∪ pcN = `)) 6= ∅} .

For example, Section 2 first discovers an equivalence relation that consists of
three equivalence classes {11}, {13}, and PC 2\{11, 13}. This equivalence relation
yields a control-flow abstraction that, for example, yields the following result:

α({pc2 = 11, pc2 = 16}) = {11} ∪ PC 2 \ {11, 13} .

The following observation underlines our algorithm for non-monotonic refine-
ment of control-flow abstraction. Each spurious counterexample, say τ1 . . . τn can
be eliminated by keeping track of a certain predicate pci = `, i.e., if ρτ1...τn

= ∅
then there exists i ∈ 1..N and ` ∈ L such that for k ∈ 1..n and j ∈ 1..n− k + 1
holds

SafeInd(true . . . true︸ ︷︷ ︸
k times

pci = ` . . . pci = `︸ ︷︷ ︸
j times

false . . . false︸ ︷︷ ︸
n−k−j+1 times

, τ1 . . . τn) .

For our counterexample π shown above, one refinement possibility is given below:

SafeInd(pc2 = 11 . . . pc2 = 11︸ ︷︷ ︸
6 times

false . . . false︸ ︷︷ ︸
5 times

, π) .

Figure 4 shows an algorithm NonMonControlRefine that computes a
characteristic function for adjusting the control-flow abstraction. The algorithm
finds an equivalence relation with the minimal number of equivalence classes,
which decreases the size of the abstract state space and improves efficiency of
the abstract reachability computation. Our implementation relies on a proposi-
tional encoding that describes constraints on the characteristic functions. These
constraints can be solved efficiency using a state-of-the-art SAT solver.

We illustrate NonMonControlRefine using the counterexample π above,
which is taken from Section 2, and assume that the input set Paths contains only
the path π. Line 1 in Figure 4 initializes the number of equivalence classes m
to 2, which serves as the first candidate. The repeat loop (lines 2–17) attempts
to find a control abstraction with at most m equivalence classes. If no such
abstraction exists then m is incremented and the attempt is repeated. This
iteration terminates after at most |L|-many steps, where |L| is the size of L.

At the first attempt, we start by creating propositional variables that keep
track of equivalence classes for control locations, see lines 4–7. For our ex-
ample, we assume bits(11) = (b1b2) and bits(13) = (b3b4), and hence B con-
tains {b1, b2, b3, b4}.
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Since Paths contains only one counterexample, namely π, the for loop (lines
9–15) is executed only once. This path has two root causes of infeasibility, which
leads to two iterations of the inner for loop in lines 11–14. At the first one we
obtain pc2 = 11, k = 0, j = 6, and `′ = from(τ13) = 13. Then, line 14 computes
Ψ = false ∨ bits(11) 6= bits(13). This constraint encodes the condition that the
control locations 11 and 13 need to be distinguished by the control abstraction,
formally, 11 6≡ 13.

The next iteration of the inner for loop discovers that for k = 6 and j = 3
we have

SafeInd(true . . . true︸ ︷︷ ︸
6 times

pc2 = 14 . . . pc2 = 14︸ ︷︷ ︸
3 times

false false, π) ,

and `′ = from(τ17) = 17. We finish the execution of the inner for loop and
obtain the final constraint

Φ = bits(11) 6= bits(13) ∨ bits(14) 6= bits(17) .

The first disjunct in Φ requires that at least one bit of bits(11) is different from
the corresponding bit in bits(13). This condition translates to (b1 6= b3 ∨ b2 6=
b4), which is equivalent to (b1 ∧ ¬b3) ∨ (¬b1 ∧ b3) ∨ (b2 ∧ ¬b4) ∨ (¬b2 ∧ b4).

The constraint Φ is satisfiable. We consider a solution σ such that
σ(bits(11)) = (0 0), σ(bits(13)) = (0 1), σ(bits(14)) = (0 0), and σ(bits(17)) =
(0 0). This solution leads to the characteristic function f≡ that maps 11, 14, and
17 to the same equivalence class. This equivalence class is different from f≡(13).

At each refinement iteration more and more conjuncts are added to the con-
straint Φ in line 15. As an additional optimization, we first try to find same
number of partitions among program counters as the number of partitions found
in the last iteration. If this fails, then we grow the number of partitions one
by one. In the worst case, the partition size may grow upto the number of pro-
gram locations. However, in our experiments the number of control partitions
was much lower indicating the benefit of control abstraction.

6 Experiments

We implemented the algorithm NonMonControlRefine in our tool for the
verification of multi-threaded programs written in the C language. Since our
tool uses both data abstraction and control abstraction, it may be possible that
some spurious counterexample can be ruled out by both data abstraction refine-
ment and control abstraction refinement. In this situation, we use an heuristic
that prefers data refinement over control refinement. Our tool uses a standard
(i.e. monotonic) abstraction refinement scheme for dealing with data variables,
and relies on NonMonControlRefine for the discovery of adequate control
abstraction. Constraints generated by NonMonControlRefine are resolved
using the Z3 solver [12]. Next, we will report our experience with applying Non-
MonControlRefine to the verification of multi-threaded programs.
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Monotonic refinement Non-monotonic refinement
Program Time | ≡ | Time | ≡ |
Bakery-atomic [27] 6.6s 5.7+0.9 8 4.8s 4.1+0.7 7
Bakery [25] 54s 48.4+5.6 14 26s 23.1+2.9 10
Bluetooth [31] 19.5s 16.4+3.1 7 16.4s 11.3+5.1 5
Mozilla-order-fixed [26] 2.7s 2.1+0.6 5 1.6s 0.9+0.7 3
Time-varying-mutex [14] 9.6s 8.7+0.9 10 7.1s 6.3+0.8 7

Table 1. Comparison between monotonic and non-monotonic refinement of control
abstraction. For each configuration we present (i) the total verification time, its de-
composition into time spent on (ii) the abstract reachability computation and (iii)
abstraction refinement, together with (iv) the number of equivalence classes | ≡ | that
determine the control abstraction.

We evaluated the non-monotonic refinement scheme in direct comparison
with monotonic one and present a summary in Table 1. Our examples include
two versions of the Bakery algorithm for mutual exclusion. Bakery [25] is shown
in Figure 2, while Bakery-atomic is its simplified version that increments the
ticket variable atomically [27]. Bluetooth models the stopping procedure of a
Windows NT Bluetooth driver [31], where a worker thread asserts that a boolean
flag stopped is not set to false by a second stopper thread. Mozilla-order-
fixed is the fixed version of a vulnerability from the Mozilla CVS repository,
which was discussed in abbreviated form in [26, Figure 2]. The property to verify
is that two operations performed by different threads are executed in the correct
order. Lastly, Time-varying-mutex illustrates a synchronization idiom found
in the Frangipani file system [14], where it is verified if a thread has exclusive
access over a disk block.

At a high level, our approach can be viewed as an optimization step with a
trade-off. While the non-monotonic refinement keeps the number of equivalence
classes | ≡ | smaller, it has to solve a growing set of constraints which may impact
on the refinement time. On our set of examples, we observed that the increase
in refinement time is acceptable and the coarser abstraction that is discovered
leads to a smaller time for abstract reachability computation. Consequently, the
time for non-monotonic verification compares favorably to that for verification
via monotonic refinement. We found overall time savings ranging from 18% for
Bluetooth to 52% for Bakery.

7 Related work

Our paper builds upon counterexample-based model checking [2, 6, 7, 22], which
mostly employs monotonic refinement techniques that consider a single coun-
terexample at a time and are based on weakest preconditions [2] and inter-
polation [21]. Our non-monotonic scheme eliminates all previously discovered
spurious counterexample, which is in contrast to the elimination of all spurious
counterexamples of a given length [16].
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Previous non-monotonic abstraction refinement approaches focus on data re-
finement, see e.g. [19,28]. The collection of broken traces in [19] is closely related
to our history of counterexamples. While [19] identifies which data variables to
keep track by analysing broken traces, our approach first employs a constraint-
based reduction, which may be viewed as a generalization. The non-monotonic
abstraction refinement using interpolants [28] avoids explicit construction of ab-
stract state transformer that is usually required for program verification. Instead,
an interpolation procedure simultaneously adjusts precision for all previously dis-
covered spurious counterexamples. In contrast to [28], our non-monotonic control
abstraction imposes additional constraints on the form of the obtained abstrac-
tion using constraints.

Monotonicity plays a crucial role for widening operators in abstraction inter-
pretation framework [10] and its automatic refinement [11,17,18,32]. Refinement
techniques for widening achieve monotonicity by considering results of abstract
reachability tree computation from the previous iterations, see e.g. [17, 18]. We
are not aware of non-monotonic refinement in this domain.
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A Abstract fixpoint checking

In this appendix we briefly revisit abstract fixpoint checking together with the
re-construction of counterexample paths. See Figure 5 for the algorithm Find-
Counterexample. The algorithm takes as input a program and a set of pred-
icates defining the abstraction function. The computation of abstract reachable
states is implemented using a queue of abstract states whose successors are yet
to be computed. In order to be able to re-construct a counterexample path in
case the error state of the program is reached (see line 8), the auxiliary relation
Parent keeps track of how each abstract state is reached. The counterexample
re-construction is performed in lines 9–13 via a backward traversal.
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function FindCounterexample
input
P : program
P : abstraction predicates

vars
Reach : reached abstract states
Parent : parent relation
Queue : queue of abstract states
n, n′ : abstract states
τ : program transition

begin
Parent := ∅
Reach := {αP({sI})}
add αP({sI}) to Queue
while Queue is not empty do

n := take from Queue
for each τ ∈ T do

n′ := post#(n, τ)
if sE ∈ n′ then

π := τ
while exists n and τ such that (n, τ, n′) ∈ Parent do

n′ := n
π := τ ′ · π

done
return Some π

else if ¬(∃m ∈ Reach : n′ ⊆ m) then
add n′ to Queue
Reach := {n′} ∪ Reach
Parent := {(n, τ, n′)} ∪ Parent

done
return None

end

Fig. 5. Abstract fixpoint checking algorithm combined with a counterexample con-
struction step.
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