
A Type System for Resource Protocol Verification
and its Correctness Proof

Corneliu Popeea and Wei-Ngan Chin
Department of Computer Science

School of Computing, National University of Singapore
{popeeaco,chinwn }@comp.nus.edu.sg

ABSTRACT
We present a new method, based on a form of dependent typing, to
verify the correct usage of resources in a program. Our approach
allows complex resources to be specified, whose properties are cap-
tured by annotated types and conditions oninvarianceand final
states. The protocol itself is specified through a set of pre-defined
methods, whose pre-condition and post-condition together, enforce
the correct temporal usage of each resource type. We design a sim-
ple language together with a type system that shows how resource
protocol verification can be achieved. We formalise an operational
semantics for the language and provide a correctness proof which
confirms that well-typed programs conform to the specified proto-
col of each resource type.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification -
Correctness proofs; D.3.3 [Programming Languages]: Language
Constructs and Features - Abstract data types; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs - Pre- and post-conditions; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages -
Program analysis

General Terms
Languages, Verification, Theory

Keywords
Resource Specification, Protocol Verification, Dependent Type Sys-
tem, Path-sensitive Analysis, Correctness Proof

1. INTRODUCTION
In recent years, there have been increasing interests on tools (and

techniques) that could verify important safety properties of soft-
ware, for the purpose of eliminating bugs at compile-time [12, 11,
4, 13, 14]. An important domain for such software verification is in
the realm of protocols for resources (such as those of device-drivers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’04,August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

or memory management) where bugs could have a crippling effect
on systems software.

An example of protocol (expressed as a finite automata) is shown
in figure 1(a) for a file system with audit checks. Each file has a
state and must be opened before it is accessed via either read or
write. Each write operation must be followed by a read operation
for the purpose of verifying the previous write. At the end of the
operations, we expect each file to be closed, with a node (labeled
4) to denote this final state.

1

3

2
 4
4

open

write
read

close

read

(a)

resource File〈s〉 st (1 ≤ s ≤ 4), (s = 4), {s}
newFile :: ()→ File〈s〉 st (s = 1)
open :: File〈s〉 → () st (s = 1 ∧ s′ = 2)
close :: File〈s〉 → () st (s = 2 ∧ s′ = 4)
read :: File〈s〉 → Int〈r〉 st (s = 2 ∨ s = 3) ∧ s′ = 2
write :: (File〈s〉, Int〈r〉)→ () st (s = 2 ∧ s′ = 3)
getState :: File〈s〉 → Int〈n〉 st (n = s ∧ s′ = s)

(b)

Figure 1: Audit file protocol

Various approaches, based on static analysis [9, 4, 19], have been
advocated for ensuring that user programs satisfy stated resource
protocols. Of particular interests are type-based approaches [11,
13] where users are expected to provide type annotations that can
assist in the verification process. However, current type-based ap-
proaches suffer from two main problems. Firstly, they are usually
path-insensitive, as they do not take the conditions of branches into
account. Secondly, only simple resources with finite states have
been considered.

In this paper, we propose the use of an advanced type system,
based on dependent typing, to model both resource protocols and
the verification of user programs that use them. In the case of
audit file, an annotated typeFile〈s〉 denotes the state of its re-
source, while its protocol can be specified through dependent types
for each of its primitive operations, as shown in figure 1(b). This
essentially captures the pre-condition and post-condition of each
method, allowing user programs to be checked for protocol con-
formance. Take note that we use the prime notation to capture the
post-state. For example, the size variabless ands′ in the constraint
of a given method will denote the state of a file of typeFile〈s〉,
beforeandafter the execution of the method. In the case ofopen,
we require the pre-state of the file bes = 1 and the post-state to
bes′ = 2. For thegetState primitive, the integer output captures
the state of the file vian = s. As this is a query, the state of the
file is unchanged, denoted explicitly bys′ = s. Note that primed
versions of size variables are not needed for output (e.g.File〈s〉 of
newFile) nor immutable parameter values (e.g.Int〈r〉 of write),
as these values have only a single state each.

The main motivation for proposing such a type system is to pro-
vide anexpressiveandprecisemeans for specifying resource pro-
tocols and to verify that programs which use these resources con-
form to the specified protocols. We shall highlight a correctness
proof which shows that such a verification method is sound with
respect to an operational semantics for our programs. Our main
contributions are:

• High precision: We propose a new approach to protocol
specification and usage verification, based on a dependent
type system that iscontext-, flow- and path-sensitive. To-
gether with a relational size analysis in the Presburger arith-
metic domain, they add considerably to the precision of the
proposed verification process.

• Resources as ADTs:We model each resource (and its pro-
tocol) as an abstract data type (ADT) with a size-annotated
type, together with corresponding conditions forinvariance,
finality andmutability. This specification allows both simple
and complex resource types to be elegantly expressed.

• Soundness:Our type system has been proven sound. We
provide an operational semantics for our language and prove
that each well-typed program never violates the protocols of
the resources used.

The remainder of this paper is organized as follows. Section
2 elaborates on a specification mechanism for modelling each re-
source type and its protocol, followed by a simple alias-free lan-
guage which we have adopted for our study. Section 3 proposes a
set of type rules that can be used to verify user programs to ensure
the correct usage of each resource type in accordance with the spec-
ified protocols. The semantics of our language is introduced in sec-
tion 4. In section 5, we highlight the correctness of our type rules
by proving that each well-typed program is guaranteed to be free
of protocol errors. Section 6 discusses how aliasing of resources
can be handled, while section 7 presents some related works. We
provide some concluding remarks in the last section.

2. RESOURCE SPECIFICATION
We propose to model each resource as an ADT with a set of

pre-defined methods. These methods may change the state of their
resources, and must be executed according to given resource pro-
tocols. Several aspects of each resource type and its protocol can
be captured, including:

• resourceinvariancethat has to be maintained at all times.

• resourcefinality that has to be satisfied whenever a given re-
source becomes inaccessible (dead).

• methodpre-conditionwhich captures the requirementbefore
each method invocation.

• methodpost-conditionwhich captures the expected stateaf-
ter each method invocation.

Each new resource type can be specified using the following con-
struct:

resource r〈n1..p〉 st φinv , φfinal , ISet

where{n1..p} denotes a non-empty set of integer-valued size vari-
ables representing the state for resource typer, while φinv and
φfinal are the invariance and finality constraint for each object of
the resource type. The invariance condition essentially limits the
allowable state of each resource type, while the finality condition
captures a mandated state of a resource prior to its disposal. Also,
ISet denotes a set of size variables that are subject to imperative
changes. Conversely,({n1..p} − ISet) denotes the set of immutable
size-variables whose values do not change.

resource Lock〈s〉 st (0 ≤ s ≤ 1), (s = 0), {s}
newLock :: Int〈i〉 → Lock〈s〉 st (s = 0)
lock :: Lock〈s〉 → () st (s = 0 ∧ s′ = 1)
unlock :: Lock〈s〉 → () st (s = 1 ∧ s′ = 0)
getState :: Lock〈s〉 → Int〈n〉 st (s′ = s ∧ n = s)

(a)

resource Buffer〈s, c〉 st (0 ≤ s ≤ c ∧ c > 0), (s = 0), {s}
newBuffer :: Int〈n〉 → Buffer〈s, c〉 st (n > 0 ∧ c = n ∧ s = 0)
get :: Buffer〈s, c〉 → Int〈n〉 st (s > 0 ∧ s′ = s− 1)
add :: (Buffer〈s, c〉, Int〈n〉)→ () st (s < c ∧ s′ = s + 1)
getNum :: Buffer〈s, c〉 → Int〈n〉 st (n = s ∧ s′ = s)
getCap :: Buffer〈s, c〉→ Int〈n〉 st (n = c ∧ s′ = s)

(b)

resource Array〈s〉 st (s > 0), True, {}
newArray :: Int〈n〉 → Array〈s〉 st (n > 0 ∧ s = n)
assign :: (Array〈s〉, Int〈i〉, Int〈k〉)→ () st (0 ≤ i < s)
get :: (Array〈s〉, Int〈i〉)→ Int〈k〉 st (0 ≤ i < s)
length :: Array〈s〉 → Int〈k〉 st (k = s)

(c)

Figure 2: Resource protocol specifications

An example of resource declaration is themutexlock type, de-
clared in figure 2(a). Take note that each lock’s state could either be
0 (unlocked) or 1 (locked). Its sole size-variables may be changed.
The finality constraint(s = 0) ensures that the lock is released in
the end. Associated with this resource declaration are four prede-
fined methods. Both thelock andunlock operations require each
mutex lock to be in the opposite state of its intended operation.
The post-conditions mirror the flip operations performed. We also
provide a query function,getState, which allows programmers to
determine the status of a given mutex. Lastly,newLock returns a
new mutex (for a specified identifier) in the unlocked state.

Our next example is a more sophisticated buffer resource, spec-
ified in figure 2(b). In general, this resource cannot be captured

using a finite state model, as the number of states is dependent on
its capacity (which is unknown at compile-time). Two size vari-
ables,c and s, are used to denote respectively, thecapacityand
current sizeof the buffer. Its invariance, namely(0≤s≤c ∧ c > 0),
is guaranteed at all times. Before each buffer becomes inaccessi-
ble, we require it be cleared with(s = 0) as its finality constraint.
Lastly,s is imperative, whilec is immutable. The given set of pre-
defined functions must ensure that the invariance of each buffer is
maintained at all times.

Our specification mechanism for resource protocol using ADT
is quite general. Though state changes are typically expected for
resource protocols, our approach also supports as a special case re-
source protocol whose state never change after it has been created.
A well-known example that falls under this degenerate category is
the array data type itself. We could model such an array resource
by the ADT from figure 2(c), effectively allowing the array bound
check safety problem to be treated as a special case of protocol
verification.

2.1 Language
The primary focus of this paper is an advanced type system for

resource protocol and its corresponding soundness proof. For sim-
plicity, we shall focus on a first-order functional language with re-
sources, calledRESFP. Its syntax is given in figure 3.

P ::= rdecl∗ pdef∗ fdef∗

rdecl ::= resource rt st φinv , φfinal , {n∗}
pdef::= f :: (t1, .., tm) → t st φ

fdef ::= f :: (t1, .., tm) → t st φ ; f(v1, .., vm) = e

t ::= rt | b

rt ::= r〈n+〉
b ::= Int〈n〉 | Bool〈n〉 | Void〈〉 | List〈n〉(b)
e ::= k | v | f (v1, .., vm)

| if v then e1 else e2 | let v = e1 in e2

φ ∈ F (Presburger Size Constraint)

φ ::= β | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ
β ∈ BExp (Boolean Expression)

β ::= True | False| α1 = α2 | α1 < α2 | α1 ≤ α2

α ∈ AExp (Arithmetic Expression)

α ::= c | n | c ∗ α | α1 + α2 | −α

wherec is an integer constant

n is a size variable

v is a program variable

Figure 3: Syntax for the RESFP language

Each program contains declarations for resources, primitives and
user-defined methods. As already illustrated in our examples, each
primitive method declaration has the form:

f :: (t1, .., tm) → t st φ

wheret1, .., tm andt are annotated types for parameters and result,
respectively. The size constraintφ captures both the pre-condition
and post-condition of the method.

To support dependent typing, our types and methods are aug-
mented with size variables and size constraints. For size constraint,
we restrict it to Presburger form, as decidable (and practical) con-
straint solvers (e.g. [23]) are available.

Note that the suffix notationy∗ denotes a list of zero or more
distinct syntactic terms. For convenience, we use() to denote both
the value of and as a shorthand for theVoid〈〉 type.

Though functional, the language has imperative effects through
its resources. In order to avoid aliasing of resources, new (unique)
resources are only returned through primitive methods. Further re-
strictions to prevent aliasing are enforced by our type system. User-
defined methods cannot return values of resource type and we nei-
ther allow the same resource to be passed to different parameters
of each method call, nor allow a resource variable to be used other-
wise than as a method parameter.

Alias analysis can often be supported separately as an add-on
module. An initial proposal on how to handle alias analysis is dis-
cussed in section 5.

TheRESFP language can be extended with syntactic abbrevia-
tions to make programming more convenient. Some examples of
equivalences are shown below.

m(e1, . . . , en) ≡
let v1 = e1 in (· · · (let vn = en in m(v1, . . . , vn)) · · ·)

if e1 then e2 else e3 ≡
let v = e1 in (if v then e2 else e3)

e1 ; e2 ≡ let v = e1 in e2

2.2 Path-Sensitive Relational Analysis
The use of Presburger arithmetic with integer domain has sev-

eral benefits. Firstly, it provides for a uniform and consistent way
to capture both the states of resources and values of program vari-
ables. Both bounded and unbounded states/values could be cap-
tured by the integer domain. For example, the boolean value, de-
noted by the annotated typeBool〈b〉, could have its domain bounded
by the size constraint0≤b≤1; with b=0 to denoteFalse andb=1

to denoteTrue.
Capturing all states/values in the same integer domain also al-

lows us to express relational analysis in a straightforward way. For
example, the latest state of a fileFile〈s〉 may be tightly coupled
with an integer program variableInt〈i〉 via a disjunctive formula
(s′=4∧i=− 1)∨(s′ 6=4∧i≥0). Disjunctive formula may arise from
different branches of conditions. Such relations are directly sup-
ported by the Presburger arithmetic form.

Presburger formula also allows us to support path-sensitive anal-
ysis where each path is marked by the boolean values of the tests
from conditionals taken. This correlation of program states with
paths from conditional construct supports more precise relational
analysis. It also allows infeasible paths to be identified whenever
the size constraint evaluates toFalse.

These features of Presburger form in integer domain allow more
precise program states to be captured. As we have seen with the
buffer example, we are able to model the protocols of resources
with unboundedsymbolic states. Let us look at two other exam-
ples, involving conditional and recursion, that will help reiterate
the utility of path-sensitive relational analysis via dependent typ-
ing.

Consider a functionf that takes a flag and a mutex lock, as shown
in figure 4(a). Based on the value of the flag, it either performs a
locking or does nothing. To capture this path-sensitive behaviour,
we can declare the type forf, as follows:

f :: (Bool〈b〉, Lock〈s〉)→ ()
st (b = 1 ∧ s = 0 ∧ s′ = 1) ∨ (b = 0 ∧ s′ = s)

Take note that thedisjunctioncaptures two cases, namely: (i) when
flag is true and the lock operation is performed, (ii) when flag is
false and no operation is performed. Each use of thisf function

f(flag, r) = if flag then lock(r)
else ()

(a)

addMany(b, n, val) =
if n ≤ 0 then ()
else
add(b, val);
addMany(b, n−1, val)

(b)

Figure 4: Two user functions

is expected to satisfy its pre-condition, which can be obtained by
quantifying (existentially) the size variables of the result and post-
states. For example:

∃s′ · ((b = 1 ∧ s = 0 ∧ s′ = 1) ∨ (b = 0 ∧ s′ = s))
≡ (b = 1 ∧ s = 0) ∨ b = 0

Recursive functions (and therefore loops) may also be handled
in a path-sensitive manner by our proposed dependent type system.
In this case, the pre-condition to recursive functions must be strong
enough to ensure that all calls to each resource primitive be safe.
Consider the functionaddMany in figure 4(b), which would add an
integer valuen times to a given buffer. To ensure that alladd prim-
itive calls are safe, we require the following dependent type for
addMany.

addMany :: (Buffer〈s, c〉, Int〈n〉, Int〈v〉)→ ()
st (s + n ≤ c ∧ s′ = s + n)

The pre-condition for this function, namely(s + n ≤ c), ensures
that we have enough space to add a given valuen times into the
buffer. Correspondingly,(s′ = s + n) indicates a precise post-state
after each successful execution of the method. Let us now look
at the type rules that can help verify if user programs conform to
stated resource protocols.

3. TYPE SYSTEM
There are two key areas to verify for resource protocols and their

user-programs, namely:

• Protocol verificationto ensure that each resource protocol
(comprising a set of predefined methods) satisfies some stated
resource properties (e.g. invariance, liveness, fairness, etc).

• Usage verificationto ensure that user program uses the re-
sources in accordance to the respective protocols.

Traditionally, much interest have been devoted to certifying that
protocols meet some stated properties[12, 1]. In recent years, new
techniques [13, 11] have been developed also for the latter. This
paper is mostly concerned with usage verification, as we treat each
resource as an ADT. However, as we shall see later (in the type rule
for primitives), we do in fact also verify the protocols themselves
by checking that the respective resource invariance is maintained
by the post-conditions of each predefined method.

We shall present the proposed protocol verification mechanisms
in a type-checking framework whereby type annotations are sup-
plied at method boundary.

3.1 Notations
We begin with a review of some notations used. Let us de-

fine V to return all free size variables in a formula. For example,
V(x′ = z + 1 ∧ y = 2) = {x, y, z}. We also extend the definition of
V to annotated type, as well as type environment.

The functionprime takes a set of size variables and returns their
primed version. For example,prime({s1, .., sn}) = {s′1, .., s′n}. We
extend this to apply to annotated type (and type environment) by re-
placing their imperative size variables with primed counterparts, as
follows: prime(t) = ρ t whereρ = [s 7→ s′ | s ∈ I(t)] andI(t) de-
notes the set of imperative size variables from the typet. The func-
tion prime is also defined for substitutions as follows:

prime[x 7→ a, y 7→ b] = [x′ 7→ a′, y′ 7→ b′]

Often, we need to express a no-change condition on a set of im-
perative size variables. We define anoX operation as follows which
returns a formula for which the original and prime variables are
made equal.

noX ({}) =df True noX ({x} ∪X) =df (x′ = x) ∧ noX (X)

This is extended to types usingnoX (t) =df noX (I(t)).
We introduce a sequential composition operation,∆◦Xφ, to cap-

ture a size constraint∆ that is being composed with an incremental
changeφ whereX = {s1, .., sn} is a set of size variables that are
being changed. This operation can be formally defined as follows:

∆ ◦X φ =df ∃D · ρ′(∆) ∧ ρ(φ)
where D = {r1, .., rn} are new size variables

ρ = [si 7→ ri]
n
i=1 ; ρ′ = [s′i 7→ ri]

n
i=1

An example of sequential composition is considered next. Assum-
ing that the current size constraint is(x′ = 5 ∧ z′ = x + 6), and the
incremental change which affects variables{x, y} is
(y′ = x + 1 ∧ x′ = 10), we can obtain the updated size constraint
via :

(x′ = 5 ∧ z′ = x + 6) ◦{x,y} (y′ = x + 1 ∧ x′ = 10)
≡ ∃x0, y0 · (x0 = 5 ∧ z′ = x + 6) ∧ (y′ = x0 + 1 ∧ x′ = 10)
≡ (z′ = x + 6 ∧ y′ = 5 + 1 ∧ x′ = 10)

3.2 Type Rules for Verification
Each programP consists of declarations for resources, primi-

tive methods and user-defined methods. The program judgement
`prog P (depicted in figure 5) checks respectively the resource dec-
larations, primitive methods and user-defined methods by using the
following three judgements:

`res rdecli, i ∈ {1..r}
`prim pdef i, i ∈ {1..p}
`meth fdef i, i ∈ {1..q}

The rule [RES] for resource declaration checks that only the size
variables of the declared resource are used in its three components,
namely invariance, finality and set of imperative size variables. We
also provide the following functions to extract these components:

inv(b) =df True

resource r〈m1..p〉 st φinv , φfinal , ISet∈ P
ρ = [mi 7→ ni]

p
i=1

inv(r〈n1..p〉) =df ρ φinv

final(b) =df True

resource r〈m1..p〉 st φinv , φfinal , ISet∈ P
ρ = [mi 7→ ni]

p
i=1

final(r〈n1..p〉) =df ρ φfinal

I(b) =df {}

resource r〈m1..p〉 st φinv , φfinal , ISet∈ P
ρ = [mi 7→ ni]

p
i=1

I(r〈n1..p〉) =df ρ ISet

[PROG]

`res rdecli, i ∈ {1..r}
`prim pdef i, i ∈ {1..p} `meth fdef i, i ∈ {1..q}

`prog rdecl1..r pdef 1..p fdef 1..q

[RES]

X = V(rt) ISet⊆ X
V(φinv) ⊆ X V(φfinal) ⊆ X

`res resourcert st φinv , φfinal , ISet

[PRIM]

XU =
⋃p

i=1(V(ti)− I(ti)) ∪ V(t) V(φ) ⊆ XU ∪XP

XP =
⋃p

i=1(I(ti) ∪ prime(I(ti))) ψ =
∧p

i=1 inv(ti)
ψ ∧ φ ≈>I(ti)

inv(ti), i ∈ 1..p ψ ∧ φ ⇒ inv(t)

`prim f :: (t1, .., tp) → t st φ

[METH]

Γ = {v1 :: t1, .., vp :: tp} ∆ = pre(f) ∧ noX (Γ)
¬isResourceType(t) Γ;∆ ` e :: t′, ∆f

` t′<: t, ρ ∆f ⇒ ρ φ

`meth f :: (t1, .., tp) → t st φ; f(v1, .., vp) = e

[CONS1]

∆′ = ∆

Γ;∆ ` () :: Void〈〉, ∆′

[CONS2]

s = fresh()
∆′ = ∆ ∧ (s = n)

Γ;∆ ` n :: Int〈s〉, ∆′

[CONS3]

s = fresh()
∆′ = ∆ ∧ (s = 1)

Γ;∆ ` true :: Bool〈s〉, ∆′

[CONS4]

s = fresh()
∆′ = ∆ ∧ (s = 0)

Γ;∆ ` false :: Bool〈s〉, ∆′

[VAR]

Γ(v) = t ¬isResourceType(t)
t′ = fresh(t) φ = equate(t′, t)

Γ;∆ ` v :: t′, ∆ ∧ φ

[MI]

f :: (t1, .., tp) → t st φ ∈ P t′ = fresh(t) ` t′i<: ti, ρi

Γ(vi) = t′i, i∈1..p ρ = (ρi] prime(ρi))
p
i=1] rename(t, t′)

X =
⋃p

i=1 I(t′i) ∆ ≈>X ρ(pre(f)) distinct{vi | isResourceType(ti)}
Γ;∆ ` f(v1, .., vp) :: t′, ∆ ◦X ρ(φ)

[LET]

Γ;∆ ` e1 :: t1, ∆1 t′1 = fresh(t1) ` t1<: t′1, ρ
∆′1 = ρ−1 ∆1 ∧ noX (t′1) Y = V(t′1) ∪ prime(I(t′1))
Γ, v :: t′1;∆′1 ` e2 :: t2, ∆2 ∆2 ≈>I(t′1) final(t′1)

Γ;∆ ` let v = e1 in e2 :: t2,∃Y ·∆2

[IF]

Γ(v) = Bool〈b〉
Γ;∆ ∧ b = 1 ` e1 :: t1, ∆1 Γ;∆ ∧ b = 0 ` e2 :: t2, ∆2

t = fresh(t1) ρi = rename(ti, t), i = 1, 2

Γ;∆ ` if v then e1 elsee2 :: t, ρ1∆1 ∨ ρ2∆2

Figure 5: Type rules

The rule [PRIM] for primitive declaration assumes that the in-
variant property is present for each parameter at the pre-state (through
ψ). It uses this assumption to check that each resource satisfies its
invariance at the post-state of the callee. Also we useXP to rep-
resent the set of size variables that are imperative, andXU for the
set of size variables that are either immutable or appear in the re-
turn type of the method. The variables used in the size constraint
φ should be confined to the union of these two sets, as the primed
version of the variables fromXU is not allowed. The relation≈>X

is used to check the validity of some condition, and is defined as
follows:

∆ ≈>X φ =df (∆ ⇒ ρφ)

where

ρ = [s1 7→ s′1, .., sn 7→ s′n] andX = {s1, .., sn}.

Take note that the operator≈>∅ is equivalent with the usual logical
implication:∆ ≈>∅ φ =df (∆ ⇒ φ).

The rule [METH] for method declaration first builds∆, an ini-
tial size constraint that is used to derive∆f as the post-state of the
method body. The initial size constraint contains the assumption
that the pre-condition of the current method is satisfied. Subse-
quently, the post-state that is derived must satisfy the declared size
constraint,φ, of its method. The pre-condition of each method can
be extracted by the functionpre, by existentially quantifying both
primed and size variables that appear in the return type.

f :: (t1, .., tp) → t st φ ∈ P X =
⋃p

i=1 prime(I(ti)) ∪ V(t)

pre(f) =df ∃X · φ

As described earlier, we avoid aliasing by imposing restrictions on
the usage of resource variables. These restrictions are enforced in
the type system by the functionisResourceType. We also make use
of a subtype relatioǹ t1<: t2, ρ, which forces same underlying
types fort1 andt2, and returns a mappingρ from the size variables

of the supertypet2 to their respective counterparts from the subtype
t1. Formally, the subtype relation is defined as follows:

ρ = [n 7→ m]

` b〈m〉<: b〈n〉, ρ
ρ = [ni 7→ mi]

p
i=1

` r〈m1..p〉<: r〈n1..p〉, ρ

The type judgement for expressions is of the form:

Γ;∆ ` e :: t, ∆′

whereΓ is a variable environment mapping program variables to
their respective annotated types;∆(∆′) denotes the size constraint,
which holds for the size variables associated withΓ (Γ andt) for
expressione before (after) its evaluation;t is an annotated type.

Our type judgement generates types with fresh size variables.
This facilitates the quantification of dead size variables at suitable
junctures. (Dead size variables belong to intermediate expressions,
neither from type environment nor from the result, of each type
judgement.) In the above, we use the functionfresh() to generate
new size variables. We extend this to annotated type: the result
of fresh(t) has the same underlying type ast and is annotated with
fresh size variables.

The rule [VAR] uses the functionequate(t1, t2) to generate equal-
ity constraints for the corresponding size variables of its two ar-
guments. For example, we haveequate(Int〈r〉, Int〈s′〉) = (r = s′).
Occasionally, we may return a substitution using the following func-
tion: rename(Int〈r〉, Int〈s′〉)=[r 7→ s′]. Note that bothequate(t1, t2)

andrename(t1, t2) succeed only in the case thatt1 andt2 share the
same underlying type. This check is necessary for the source pro-
gram to be well-normal typed.

The rule [MI] is used for invocations of user-defined or primitive
methods, whereby their type information is retrieved from the pro-
gram (available globally asP). Subtyping is used to generate a sub-
stitution on size variables from formal to actual arguments. Each

method invocation includes as a safety check on the pre-condition
of φ. It also ensures that all arguments of resource types are distinct
to prevent aliasing using

distinct{x1, .., xm} =df (∀i, j ∈ 1..m · i 6= j ⇒ xi 6= xj)

The rule [LET] extends the type environment with a new local
variable for the next expression,e2. The subtyping rulè t1<: t′1, ρ

returns a size variable substitutionρ from the type ofv to e1’s type.
We apply the inverse substitutionρ−1 to the size constraint col-
lected frome1. Note that we have added a check at the end of the
scope to ensure that each local variable satisfies its finality con-
straint when it becomes inaccessible.

The rule [IF] for conditional expression introduces a path-sensitive
analysis for the size constraints at the two branches, which are then
combined with a disjunction.

3.3 How Is Usage Verification Achieved?
Our type-checking rules make use of the current size constraint,

∆, to perform necessary checks for protocol conformance. This
constraint captures the states of both the resources and the other
variables in relational form. If type-checking succeeds, we also
derive an expected post-condition for the given expression. To il-
lustrate this idea, consider the type-checking of an expression for
which x is unlocked, but nothing is known abouty, and where
Γ = {x :: Lock〈s〉, y :: Bool〈b〉} and∆ = (s = s′ ∧ s′ = 0). Under
this scenario, type-checking fails as we may perform another un-
lock on a mutex that is already in the unlocked state, as illustrated
below.

Γ;∆ ∧ b = 1 ` unlock(x) :: ILL-TYPED!
Γ;∆ ∧ b = 0 ` lock(x) :: (), s = 0 ∧ s′ = 1 ∧ b = 0
Γ;∆ ` if y then unlock(x) else lock(x) :: ILL-TYPED!

However, if we would use a stronger context∆1 = (s = s′ ∧ s′ = 0∧
b = 0 wherey is known to be false, the judgement would succeed.
Furthermore, our type-checking rule would compute a new post-
condition which indicates thatx will become locked, as indicated
by the resulting context∆2 = (s = 0 ∧ s′ = 1 ∧ b = 0). Note that
Falsedenotes the context of an infeasible path (or dead code).

Γ;∆1 ∧ b = 1 ` unlock(x) :: (), False
Γ;∆1 ∧ b = 0 ` lock(x) :: (), ∆2

Γ;∆1 ` if y then unlock(x) else lock(x) :: (), ∆2

As another example, consider the following whereΓ = {x :: File〈s〉},
and the initial context is(s′ = 1). Note how the size context is be-
ing updated/propagated flow-sensitively through the sequence of
expressions.

Γ; s′ = 1 ` open(f) :: (), s′ = 2

Γ; s′ = 2 ` read(f) :: Int〈r〉, s′ = 2
Γ, v :: Int〈r〉; s′ = 2 ` close(f) :: (), s′ = 4
Γ; s′ = 2 ` let v = read(f) in close(f) :: (), s′ = 4

Γ; s′ = 1 ` open(f); (let v = read(f) in close(f)) :: (), s′ = 4

4. INSTRUMENTED SEMANTICS
We shall now define for our language an operational semantics

that has been instrumented with the state of size variables. Instru-
mentation has been added to facilitate the correctness proof of our
type system given in the next section. Its addition does not af-
fect the underlying semantics of our language, as we can show
net equivalence between the instrumented and underlying seman-
tics via a bisimulation.

Notations used are defined below withVar andSVar to denote
the domains ofprogram variablesandsize variables, respectively.

Locations: ι ∈ Location

Primitive values: k ∈ prim = Int]Bool] V oid

Values: δ ∈ Value= prim] Location

Resource types: rt ∈ ResType= (name, 〈SVar∗〉)
Resource values: r ∈ ResVal= (ResType, SVar→fin Int, AbsVal)

Variable Env: Π ∈ VEnv= Var→fin Value

Store: $ ∈ Store= Location→fin ResVal

Note thatf : A →fin B denotes a finite mapping fromA to B. The
variable environmentΠ is such a mapping. We writeΠ[δ/v] to
denote an update of the variablev in Π to δ. We writeΠ + {v 7→ δ}
to denote an enhancement ofΠ to include a new binding ofδ to
v. Similar notations are used for the update and enhancement of
resource value and the store.

The dynamic evaluation rules are of the following form.

〈Π, $〉 [e] ↪→ 〈
Π′, $′〉 [e′]

Except for the primitive call, the other evaluation rules are standard
and we include them in the appendix.
[D−PrimCall]

f :: (t1, .., tp) → t st φ ∈ P isPrim(f)

($′, δ,flag) = primOp(f, [Π(v1), .., Π(vp)], $) flag = true

〈Π, $〉 [f (v1, .., vp)] ↪→ 〈Π, $′〉 [δ]

[D−PrimCall−Error]

f :: (t1, .., tp) → t st φ ∈ P isPrim(f) flag = false

($′, δ,flag) = primOp(f, [Π(v1), .., Π(vp)], $)

〈Π, $〉 [f(v1, .., vp)] ↪→ Error Usage

Take note thatprimOpis assumed to include checks which ensure
that pre(f) is satisfied, and that the necessary changes have been
made to store,$′, to also satisfyφ. If the primitive’s precondition is
not satisfied,primOpis expected to return afalse flag to signify that
an error has occurred. Correspondingly, the evaluation becomes
stuck withError Usagevalue. We will prove that for a well-typed
program this situation cannot happen.

As an example, we also specify theprimOp definition for two
primitives from the buffer protocol:newBuffer and add. We do
not provide any type rules to check such primitive definitions of
our operational semantics, but shall assume that they adhere to the
requirement stated above. Each resource value is made up of a re-
source type, its state, and an abstract value that is dependent on the
actual implementation of the resource. The state of each resource
is a mapping for its size variables, which essentially provides an
instrumented semantics for resources.

[newBuffer]

ι = fresh() α = newBuffer(n)

$′ = $ + [ι 7→ (Buffer〈s, c〉, [s 7→ 0, c 7→ n], α)]

primOp(newBuffer, [n], $) =df ($′, ι, (n > 0))

[add]

$(ι) = (Buffer〈s, c〉, [s 7→ ns, c 7→ nc], α) α′ = add(α, n)

$′ = $[ι 7→ (Buffer〈s, c〉, [s 7→ ns + 1, c 7→ nc], α′)]
primOp(add, [ι, n], $) =df ($′, (), (ns < nc))

5. SOUNDNESS OF TYPE SYSTEM
We shall now provide a correctness proof for our type rules.

Given a well-typed program, our safety theorem guarantees that
usage violations never occur.

For this purpose, we extend the static semantics of the language
with the introduction ofstore typingto describe resource types at
each store location. This ensures that objects created in the store
during runtime are type-wise consistent with those captured by the
static semantics. In our case, it is denoted by:

Σ ∈ StoreType= Location→ ResType

Store typing is conventionally used to link static and dynamic
semantics [22]. We also introduce a consistency relation to say
that the runtime environment(Π, $) is consistentwith the type
environment(Γ, Σ, ∆), written Γ;Σ;∆ |= 〈Π, $〉, if the following
judgement holds:

dom(Π) = dom(Γ) dom(Σ) = dom($) X = I(Γ)

∀v ∈ dom(Π) · Γ;Σ; True` value(Π(v), $) :: tv, ∆v

C =
∧

v∈dom(Π)(∆v ∧ equate(prime(Γ(v)), tv)

∃X.C ⇒ ∃X.∆

Γ;Σ;∆ |= 〈Π, $〉

The judgement captures the fact that the latest values of stack
and store are consistent with the final values captured by the static
context,∆. Functionvalue(δ) is defined as follows:

value(Π(v), $) = k, if Π(v) = k
value(Π(v), $) = $(ι), if Π(v) = ι

Type-checking rules will be extended to use the store typing, as
follows: Γ;Σ;∆ ` e :: t, ∆′.

We require additional intermediate expressions for use by the
dynamic semantics. The syntax of intermediate expressions is thus
extended from the original expression syntax as follows.

e ::= . . . | ret(v∗, b, e) | ι
The expressionret(v∗, b, e) is used for capturing expression in a
local block, or in a method invocation, after the stack has been
extended. The list of variables associated withret contains the
local variables declared and already allocated in the stack. The
newly introduced expression allows us to unframe the stack when
the block has been completely evaluated. The flagb is used to in-
dicate whether theret expression originates from a local block.
In this case, if the variable denotes a resource, the semantics will
check whether the finality constraint is satisfied when the scope of
the variable is terminated. The type-checking rule forret(v∗, b, e)
expression follows.

Return: [RET]

Γ(vi) = ti X =
⋃n

i=1 {V (ti) ∪ prime(ti)}
Γ;Σ;∆ ` e :: t, ∆1 ∆2 = ∃X.∆1

Γ;Σ;∆ ` ret([v1, .., vn], b, e) :: t, ∆2

We also provide type-checking rules for locations and resource val-
ues. The latter one will be used for the consistency relation of the
runtime environment with the type environment.
Location: [LOC]

Σ(ι) = r〈n1..p〉 si = fresh() ρ = [ni 7→ si]
p
i=1

Γ;Σ;∆ ` ι :: r〈s1..p〉, ∆ ∧ ρ(inv(r〈s1..p〉))
Because location expressions are not included in the source lan-

guage, they can only appear as a result of reduction rules, specifi-
cally when a primitive call reduces to a location. In this case, the

location corresponds to a new, unique resource, and its invariant is
added to the contextual constraint.

Resource Value: [RES−VAL]

si = fresh() φ =
∧p

i=1(ni = si)
Γ;Σ;∆ ` (r〈n1..p〉, ρ, α) :: r〈s1..p〉, ∆ ∧ ρφ

Note that the derived constraint is precise, as it uses the values
from the runtime environment.

After introducing the additional type rules, we formulate the
soundness of our type system by proving two key properties, for-
mulated as preservation and progress theorems.

THEOREM 1 (PRESERVATION).

(a) (Value) If

Γ;Σ;∆ ` δ : t, ∆1

Γ;Σ;∆ |= 〈Π, $〉
then the following holds wherex is fresh:

Γ + {x :: t}; Σ;∆1 |= 〈Π + {x 7→ δ}, $〉.

(b) (Expression) If

Γ;Σ;∆ ` e : t, ∆1

Γ;Σ;∆ |= 〈Π, $〉
〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

then there existsΣ′ ⊇ Σ, Γ′, and∆′, such that

Γ′ - local(e′) = Γ - local(e)

Γ′; Σ′;∆′ ` e′ : t, ∆1

Γ′; Σ′;∆′ |= 〈Π′, $′〉.

The preservation theorem characterizes the result of evaluation:
if a well-typed term takes a step of evaluation, then the resulting
term has the same well-typedness (modulo renaming of size vari-
ables). Furthermore, the resulting runtime environment is consis-
tent with the static context captured by the type judgement. The
theorem uses the functionlocal(e) which returns the set of vari-
ables from the part of the stack that will be de-allocated duringe’s
evaluation. Its definition follows:

local(e) = casee of
ret(v∗, b, e) → {v∗} ∪ local(e)
let v = e1 in e2 → local(e1) ∪ local(e2)
if v then e1 elsee2 → local(e1) ∪ local(e2)
δ | v | f(v∗) → ∅

THEOREM 2 (PROGRESS). If Γ;Σ;∆ ` e : t;∆1 and
Γ;Σ;∆ |= 〈Π, $〉, thene is either a value or there existΠ′ and$′

such that〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′].

The progress theorem states that a well-typed term is either a
value or it can take a step according to the evaluation rules.

Using the above theorems (proved in the appendix), we can prove
that a well-typed term can never reach a stuck state during its eval-
uation (or reduce to anError Usage value). Specifically, the pre-
condition of each primitive is satisfied by the states of the resources
maintained in the runtime environment. Also when resources be-
come inaccessible, they satisfy the finality constraint according to
their type.

[consumeU]

v /∈ Θ d = ({v}¢ ann(τ) = U ¤ ∅)
Θ ` consumeU(v, τ), Θ ∪ d

[conUL]

` τ ′<: τ, ρ v /∈ Θ ∪ Λ
d = ({v}¢ ann(τ ′) = U ∧ ann(τ) 6= L ¤ ∅)
g = ({v}¢ ann(τ ′) = U ∧ ann(τ) = L ¤ ∅)

Θ, Λ, Ψ ` conUL(v, τ ′, τ), Θ ∪ d, Λ ∪ g, Ψ] ρ

[A−METH]

Γ = {v1 :: τ1, .., vp :: τp} ∆ = pre(f) ∧ noX (Γ)
Γ;∆; ∅ ` e :: τ ′, ∆f , Θ ` τ ′<: τ, ρ ∆f ⇒ ρ φ
ann(τ) 6= L ∀i ∈ 1..p.(ann(τi) = L) ⇒ vi /∈ Θ

testi = (final(τi) ¢ ann(τi) = U ∧ vi /∈ Θ ¤ True), i ∈ 1..p
∆f ≈>I(Γ)

∧p
i=1 testi

`func f :: (τ1, .., τp) → τ ′ st φ; f(v1, .., vp) = e

[A−MI]

f :: (τ1, .., τp) → τ st φ ∈ P τ ′ = fresh(τ)
Γ(vi) = τ ′i , i∈1..p X =

⋃p
i=1 I(τ ′i) Λ0 = ∅ ρ0 = []

Θi−1, Λi−1, ρi−1 ` conUL(vi, τ
′
i , τi), Θi, Λi, ρi i∈1..p

ρ = ρp] prime(ρp)] rename(τ, τ ′) ∆ ≈>X ρ(pre(f))

Γ;∆;Θ0 ` f(v1, .., vp) :: τ, ∆ ◦X ρ(φ), Θp

[A−VAR]

Γ(v) = τ Θ ` consumeU(v, τ), Θ′
τ ′ = fresh(τ) φ = equate(τ ′, τ)

Γ;∆;Θ ` v :: τ ′, ∆ ∧ φ, Θ′

[A−LET]

Γ;∆; Θ ` e1 :: τ1, ∆1, Θ1 τ ′1 = freshA(τ1, A) ` τ1<: τ ′1, ρ
∆′1 = (∃V(τ1) · ρ−1 ∆1) ∧ noX (τ ′1) Y = V(τ ′1) ∪ prime(I(τ ′1))

Γ, v :: τ ′1;∆′1; Θ1 ` e2 :: τ2, ∆2, Θ2

test = (final(τ ′1) ¢ ann(τ1) = U ∧A = U ∧ v /∈ Θ2 ¤ True)
∆2 ≈>I(τ ′1) test

Γ;∆;Θ ` let v@A = e1 in e2 :: τ2,∃Y ·∆2, Θ2

Figure 6: Alias-annotated type rules

6. DISCUSSION
For simplicity, in the previous sections we have applied language

restriction to ensure that every resource is unique. While this sim-
plifies our type system and its correctness proof, it restricts the set
of programs that could be accepted. For a more practical system,
we may instead rely to an alias analysis technique to help distin-
guish unique resources from possibly shared ones.

A common technique for handling shared resource is to useweak
updateson the states of these potentially aliased resources [11, 13,
24]. (A weak update occurs when the state of a resource is be-
ing changed froms1 to s2 such thats1<:s2. In other words, the
state of such a shared resource may become less precise and is not
allowed to be arbitrarily changed.) However, this approach limits
the kinds of operations that shared resources may be subjected to.
To compensate for this, we describe runtime mechanisms to check
for safety preconditions on shared resources and their finality con-
straints.

In this section, we explore the use of a simpler alias type system,
inspired by the work of Aldrich et al [2]. Consequently, we use
U, SandL to denote unique, shared and lent resources respectively.
Unique resources are not aliased and can be accurately tracked,
while shared resources may have global aliases. Resources in lent
mode are restricted to formal parameters whose references do not
escape their methods.

In order to track the state changes for lent resources, we use
a restricted form of lending namedlent-once(or limited unique),
whereby each unique (or lent-once) resource is only allowed to be
passed to a single lent-once parameter for each method call [5, 7].
This restriction is meant to facilitate state change without aliasing
problem, and can be statically checked.

For each resource type, we annotate it with an aliasA as fol-
lows r〈n1..p〉@A whereA = U | S | L . Since imperative effects are
present only for variables of resource type, other types can be anno-
tated as shared without any loss in precision. Alias-annotated types
are denoted byτ , to distinguish them from types without alias an-
notations used in previous sections (denoted byt). To extract the

alias of an annotated type, we useann(t@A) = A. Furthermore, we
use the following partial ordering among annotations:

A<:A U<:S U<:L

Note that this ordering allows each unique resource to be transferred
to a location that is in either shared or lent mode, but not vice versa.
To track unique objects whose references may have been consumed
by such transfers, we require our type judgement to be augmented
with a set of unique resources whose uniqueness have been con-
sumed. We call this theconsumed set, denoted byΘ, and track it in
a flow-sensitive manner using the following judgement:

Γ;∆;Θ ` e :: τ, ∆′, Θ′

Each unique resource may only be consumed once, but could be
temporarily (and separately) borrowed out multiple times by lent-
once parameters. Our extended type rules presented in figure 6
use two auxiliary functions to check that these conditions are satis-
fied. The first function,consumeU , ensures that uniqueness is not
consumed twice, whileconUL function checks that, at each time
instance, a unique argument can be lent at most once.

Resource parameters of primitive methods are usually annotated
as lent: this allows the primitive method to perform state changes,
while assuming that no aliases are created during its execution.
Since state changes should be allowed only on unique resources,
the alias subtyping relation disallows a shared resource to be passed
as an argument to a lent parameter.

To accommodate with shared resource arguments, acontrolled
form of primitive operations is used. Primitive operations cannot
make any assumption about the imperative size variables of their
shared arguments. For this case, controlled primitives include run-
time checks as an alternative for compile-time preconditions. Fol-
lowing the example from figure 2(b), we introduce the following
primitive operations:

get :: Buffer〈s, c〉@L → Int〈n〉@S st (s > 0 ∧ s′ = s− 1)
getCHK :: Buffer〈s, c〉@S→ Int〈n〉@S st True
add :: (Buffer〈s, c〉@L , Int〈n〉@S)→ () st (s < c ∧ s′ = s + 1)
addCHK :: (Buffer〈s, c〉@S, Int〈n〉@S)→ () st True

Take note that the post-state of bothgetCHK andaddCHK primi-
tives do not capture the state change for their shared argument, as
denoted by the size constraintTrue.

To handle aliasing annotations, type rules are changed accord-
ingly: rules for method declaration, variable, method invocation
and let block are presented in figure 6. Similarly, the subtyping
relation is extended to handle possibly shared resources.

ρ = [n 7→ m]

` b〈m〉@S<: b〈n〉@S, ρ

A1 <: A2 ρ = (ρF ¢ A2 = S¤ ρF] ρI)

` r〈m1..p〉@A1<: r〈n1..p〉@A2, ρ

where

ρF = [mi 7→ ni], ni ∈ V(r〈n1..p〉)− I(r〈n1..p〉)
ρI = [mi 7→ ni], ni ∈ I(r〈n1..p〉)

This relation returns a substitution that links size variables from
subtype with those from the supertype. Intuitively, if the supertype
is annotated as shared, only immutable size variables can be re-
trieved from the subtype (as indicated byρF). On the other hand,
if the supertype is annotated as unique or lent, both immutable and
imperative size variables are equated with those of the subtype (as
indicated by the substitutionρF] ρI .) We use the following func-
tions to generate types with fresh size variables:

fresh(t@A) = (fresh(t))@A
freshA(t@A, A1) = (fresh(t))@A1

Also, conditional is expressed asξ1 ¢ b ¤ ξ2 =df

{ ξ1, if b;
ξ2, otherwise.

Other functions previously defined in the section 3.1 can be ex-
tended easily to handle alias-annotated types.

Compared to the previous section, the rule [A-METH] for method
declaration checks additionally the finality ofU arguments. Also,
L arguments cannot be consumed, since their uniqueness is to be
returned to the caller.

The rule [A-VAR] allows variables of resource type and primi-
tive type to be treated similarly without restrictions.

In the rule [A-MI], arguments of resource type are checked for
consumed uniqueness (this check subsumes the check for distinct-
ness), and must adhere to the alias subtype relation.

In our protocol specification, we require each resource to sat-
isfy its finality constraint prior to its disposal. Previously, this was
checked only at the rule forlet construct, where the (unique) re-
source becomes inaccessible.

In the presence of aliasing, for each possibly shared resource, we
must now also allow the finality constraint to be checked at runtime,
since statically it is not possible to determine when the resource
becomes inaccessible. Thus, if a local declaration denotes a shared
resource, we require at runtime a finality test (in thelet construct)
to check if the shared variable is the last active reference (a run-
time mechanism could employ reference counting). Consequently,
any non-compliance of such a finality check will be reported as a
runtime error.

For a unique resource, we will continue to perform its finality
check at compile-time. A unique resource may become inaccessi-
ble at three possible places, namely (i)let construct, (ii) method
declaration or (iii) at a branch of conditional. Here, each unique
resource that is not already consumed, will become dead thereafter
and their finality must be correspondingly checked. On the other
hand, if the unique resource is consumed, the obligation to satisfy
its finality is transferred together with its uniqueness.

To highlight our technique, we introduce two examples that use
bounded buffer resources. For the first example from figure 7(a),
the finality constraint can be checked at compile-time because the
resource maintains its uniqueness. This example is ill-typed, since
the finality of the resource is not satisfied at the end of the let scope:
when the buffer becomes inaccessible, it is not empty.

let b@U = newBuffer(10) in
add(b, 1); add(b, 2); get(b)

(a)

let b@U = newBuffer(10) in
add(b, 1); add(b, 2);
let b1@S = b in

(let b2@S = b1 in
getCHK(b2)); getCHK(b1)

(b)

Figure 7: Finality checks

The second example uses a combination of static and dynamic
checks to ensure that the code in figure 7(b) satisfies the buffer pro-
tocol. A reference-counting mechanism is used to detect where the
last reference to the resource becomes inaccessible, to enable a run-
time check for the resource finality. The initial unique referenceb

becomes inaccessible when its uniqueness is consumed. However,
two references to the buffer resource are shared via variablesb1

andb2 and, when both of them become inaccessible, the finality
constraint is checked and satisfied (the buffer is empty).

The two invocations ofadd primitive can be proven correct by
our type system. The flow sensitivity of the alias type rules, allows
the same resource to be viewed as unique for the first part of its
lifetime (via variableb) and as shared afterwards (via variablesb1

andb2).

7. RELATED WORK
In recent years, several type-based approaches [11, 13] have been

advocated for verifying user programs conformance to resource
protocols through tracking the states of resources. They specifi-
cally cater to protocols expressible as finite state models and do not
allow checking for resource finality. In CQual [13], qualifiers were
added to C-type to track their states through the operations of se-
lected protocols. This tracking is done automatically for user pro-
grams in a flow-sensitive manner. In Vault[11], programmers are
expected to add annotations to help check that device drivers are
being used correctly. Annotations include alias and linearity infor-
mation and also a special variant type to provide path-sensitivity to
the analysis. As a downside, the programming style is less flexible,
since both branches of a conditional have to agree on the resource
states. Both CQual and Vault are to be supported by alias analysis,
where shared objects are limited toweak updateson their states.

Another approach to the problem of resource verification is to
use dataflow analysis. ESP [10] was designed to analyse file errors
in C programs and does not require user annotations. Their analysis
is path-sensitive and has polynomial complexity, analyzing only
relevant branches taken by the state automaton transitions. On the
downside, ESP is able to track only one resource at a time, limiting
the set of properties that can be verified.

Igarashi and Kobayashi [18, 19] proposed a general framework
for resource usage analysis to infer usage patterns of resources. The
usage pattern is expressed as a trace that is checked against the
declared resource protocol (also specified via a trace.) Similar to
the above mentioned type-based methods [11, 13], but unlike our
approach, resource usage analysis is not designed to capture value-

dependent behavior of programs. We found this to be crucial in
refining our path-sensitive analysis.

Other trace-based approaches [9, 21] aim to enforce a safety
property onto a source program by adding dynamic checks where
other static analyses would reject a program as unsafe. Fradet et
al [9] analyze the usage traces at compile-time to minimize the
number of required runtime tests. Similarly, Marriott et al [21]
employed context free languages to capture usage patterns which
are then checked against protocols expressed via regular automata.
However, by mapping entire programs to automata, and performing
transformations and analyses on these automata (in a manner simi-
lar to whole program analysis) these approaches lack modularity.

To allow more properties to be checked at compile time, Mandel-
baum et al [20] devised a general theory of type refinements. They
use a fragment of intuitionistic linear logic for local reasoning on
program state. The properties that they reason about are divided in
persistent and ephemeral facts which are similar to our immutable
and imperative sizes of resources, respectively. However, values are
given singleton types and there is no provision for handling shared
resources. Their predicate logic is expressive, but their system is
unable to express protocols with unbounded (or symbolic) number
of states like the buffer resource protocol. Furthermore, relational
analysis between program variables and resource states is not di-
rectly supported.

8. CONCLUDING REMARKS
Traditionally, dependent type [25, 17, 6] has been advocated for

size analysis and used in applications, such as termination anal-
ysis[27, 3], array bound checks elimination[28, 8] and memory
space analysis[16, 15]. Through Xanadu[26], it has recently been
extended to imperative languages where variables may change val-
ues, but objects created are presently captured in asize-immutable
way so that aliasing is not an issue. However, resources are in-
herently stateful. We have shown that this aspect can be tamed
with the help of language restriction, so that aliasing is not an is-
sue in the presence of mutability. Nevertheless, we also highlight
a more sophisticated solution which tracks aliasing and uses a run-
time checking mechanism to allow shared resources to be properly
handled. Furthermore, our approach can cover a wide range of re-
source protocols, including those with finality requirement prior to
the death of its resource.

With this enhanced dependent type system, we have designed a
new solution to the protocol usage verification problem, and have
also proven its correctness. Our solution is both precise and ex-
pressive as it is able to capture a wide range of resources and their
protocols. We have presented our approach within a type-checking
framework. Extension to an inference framework should be feasi-
ble, and could follow the approach taken for array check optimiza-
tion that was recently proposed in [8]. Under this approach, we
may introduce runtime tests into locations where protocol safety
cannot be guaranteed, further extending the scope of our method.
Our adopted language is simple, and we have exploited this to for-
malize a provably correct resource protocol verification technology.

Acknowledgments
We gratefully acknowledge helpful and encouraging suggestions
from Florin Craciun, Siau-Cheng Khoo, Shengchao Qin, Martin
Sulzmann and Dana Xu. The anonymous referees provided many
valuable comments that helped streamline the presentation of the
paper.

9. REFERENCES
[1] Mart́ın Abadi and Bruno Blanchet. Computer-Assisted

Verification of a Protocol for Certified Email. In Radhia
Cousot, editor,Proceedings of the International Static
Analysis Symposium (SAS), volume 2694 ofLecture Notes on
Computer Science, pages 316–335, San Diego, California,
June 2003. Springer Verlag.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
Annotation for Program Understanding. InProceedings of
the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), Seattle,
Washington, November 2002.

[3] Hugh Anderson and Siau-Cheng Khoo. Affine-based
size-change termination. InProceedings of the Asian
Symposium on Programming Languages and Systems
(APLAS), June 2003.

[4] Thomas Ball and Sriram K. Rajamani. The SLAM project:
debugging system software via static analysis. In
Proceedings of the ACM Symposium on the Principles of
Programming Languages (POPL), pages 1–3. ACM Press,
2002.

[5] E. C. Chan, J. Boyland, and W. L. Scherlis. Promises:
Limited Specifications for Analysis and Manipulation. In
Proceedings of the IEEE International Conference on
Software Engineering (ICSE), pages 167–176, Kyoto, Japan,
April 1998.

[6] W.N. Chin and S.C. Khoo. Calculating sized types. In
Proceedings of the ACM Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM), pages
62–72, Boston, Massachusetts, United States, January 2000.

[7] W.N. Chin, S.C. Khoo, and S.C. Qin. A Sized Type System
for Objects with Alias Controls. Technical report, SoC, Natl
Univ. of Singapore, January 2004. avail. at
http://www.comp.nus.edu.sg/∼qinsc/papers/sizedtype.ps.gz.

[8] W.N. Chin, S.C. Khoo, and Dana N. Xu. Deriving
pre-conditions for array bound check elimination. In
Programs as Data Objects II, pages 2–24, Aarhus, Denmark,
May 2001. Springer Verlag.

[9] Thomas Colcombet and Pascal Fradet. Enforcing trace
properties by program transformation. InProceedings of the
ACM Symposium on the Principles of Programming
Languages (POPL), January 2000.

[10] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP:
path-sensitive program verification in polynomial time. In
Proceedings of the ACM Symposium on Programming
Language Design and Implementation (PLDI), June 2002.

[11] Robert DeLine and Manuel Fahndrich. Enforcing high-level
protocols in low-level software. InProceedings of the ACM
Symposium on Programming Language Design and
Implementation (PLDI), June 2001.

[12] Amy P. Felty, Douglas J. Howe, and Frank A. Stomp.
Protocol verification in Nuprl. InTenth International
Conference on Computer Aided Verification, pages 428–439.
Springer-Verlag Lecture Notes in Computer Science, 1998.

[13] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. InProceedings of the ACM
Symposium on Programming Language Design and
Implementation (PLDI), June 2002.

[14] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Gregoire Sutre. Software verification with Blast. In
Proceedings of the Tenth International Workshop on Model
Checking of Software (SPIN), pages 235–239. Lecture Notes

in Computer Science 2648, Springer-Verlag, 2003.
[15] Martin Hofmann. The strength of non-size increasing

computation. InProceedings of the ACM Symposium on the
Principles of Programming Languages (POPL), pages
260–269. ACM Press, 2002.

[16] J. Hughes and L. Pareto. Recursion and Dynamic
Data-Structures in Bounded Space: Towards Embedded ML
Programming. InProceedings of the ACM Conference on
Functional Programming (ICFP), September 1999.

[17] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness
of reactive systems using sized types. InProceedings of the
ACM Symposium on the Principles of Programming
Languages (POPL), pages 410–423. ACM Press, January
1996.

[18] Atsushi Igarashi and Naoki Kobayashi. Resource usage
analysis. InProceedings of the ACM Symposium on the
Principles of Programming Languages (POPL), January
2002.

[19] Naoki Kobayashi. Time regions and effects for resource
usage analysis. Technical report, Tokyo Inst. of technology,
2003.

[20] Yitzhak Mandelbaum, David Walker, and Robert Harper. An
effective theory of type refinements. InProceedings of the
ACM Conference on Functional Programming (ICFP),
Uppsala, Sweden, 2003.

[21] Kim Marriott, Peter Stuckey, and Martin Sulzmann.
Resource usage verification. InProceedings of the Asian
Symposium on Programming Languages and Systems
(APLAS), Beijing, China, November 2003.

[22] Benjamin C. Pierce.Types and Programming Languages.
MIT Press, 2002.

[23] W. Pugh. The Omega Test: A fast practical integer
programming algorithm for dependence analysis.
Communications of the ACM, 8:102–114, 1992.

[24] F. Smith, D. Walker, and G. Morrisett. Alias Types. In
Proceedings of the 9th European Symposium on
Programming, Berlin, Germany, March 2000.

[25] H. Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998.

[26] H. Xi. Imperative Programming with Dependent Types. In
Proceedings of the IEEE Symposium on Logic in Computer
Science (LICS), Santa Barbara, June 2000.

[27] H. Xi. Dependent Types for Program Termination
Verification. InProceedings of the IEEE Symposium on
Logic in Computer Science (LICS), Boston, June 2001.

[28] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. InProceedings of the ACM
Symposium on Programming Language Design and
Implementation (PLDI), pages 249–257. ACM Press, June
1998.

APPENDIX

A. EVALUATION RULES
We specify the evaluation rules, as follows.

[D−Var]
Π(v) = δ

〈Π, $〉 [v] ↪→ 〈Π, $〉 [δ]

[D−If−true] and [D−If−false]

Π(v) = true

〈Π, $〉 [if v then e1 else e2] ↪→ 〈Π, $〉 [e1]

Π(v) = false

〈Π, $〉 [if v then e1 else e2] ↪→ 〈Π, $〉 [e2]

[D−Let−1] and [D−Let−2]

〈Π, $〉 [e1] ↪→ 〈Π′, $′〉 [e′1]

〈Π, $〉 [let v = e1 in e2] ↪→ 〈Π′, $′〉 [let v = e′1 in e2]

Π′ = Π + {x 7→ δ} x = fresh()

〈Π, $〉 [let v = δ in e2] ↪→ 〈Π′, $〉 [ret(x, true, [v 7→ x]e2]

We usex = fresh() to obtain new program variables, similar to
the function used to generate new size variables in the static se-
mantics.
[D−Ret−1] and [D−Ret−2]

〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]
〈Π, $〉 [ret([v1, .., vn], cflag, e)] ↪→ 〈Π′, $′〉 [ret([v1, .., vn], cflag, e′)]

Π′ = Π− {v1, .., vn} cflag⇒ checkfinal(Π(v1), $)

〈Π, $〉 [ret([v1, .., vn], cflag, δ)] ↪→ 〈Π′, $〉 [δ]

The boolean flagcflag indicates whether aret expression orig-
inates from alet construct (in [D−Let−2], cflag is true) or from
a method invocation (in [D−Call], cflag is false). checkfinal(δ, $)
will check if the resourceδ in $ satisfies the finality constraint. If
the valueδ does not represent a resource,checkfinal(δ, $) =df True.

[D−Call]

f :: (t1, .., tp) → t st φ; f (v1, .., vp) = e ∈ P
x1, .., xp = fresh()

Π′ = Π + {xi 7→ Π[vi]}p
i=1 ρ = {vi 7→ xi}p

i=1

〈Π, $〉 [f(v1, .., vp)] ↪→ 〈Π′, $〉 [ret([x1, .., xp], false, ρe)]

B. PROOFS
Proof of preservation: (a) After extending both the dynamic stack
with a valueδ, and the type environment with a fresh variable of
δ’s corresponding type, the consistency relation continues to hold
assuming two hypotheses: the non-extended versions of the type
environment(Γ) and dynamic stack are also consistent, and the
constantk is well-typed underΓ. If the value is a locationι, the
consistency relation requires that the state ofι’s corresponding re-
source satisfies its resource type invariant. This requirement is sat-
isfied, as all primitive declarations are checked that they preserve
the resource invariance (rule [Prim]).

(b) By induction on each well-typed expressione and on each
evaluation rule applicable fore. At each step of the induction, we
assume that the desired property holds for each inductive deriva-
tion step, and proceed by case analysis on the next derivation step.
Our induction is carried out on the expected forms of well-typed
expressions, as follows.

Case [VAR]: Here,v is of base type (variables of resource types cannot
appear in this position during evaluation), let us denote it byΓ(v) =
b〈n〉. We chooseΓ′, Σ′ and ∆′ to be respectivelyΓ, Σ and ∆.
Γ′, Σ′, ∆′ |= 〈Π, $〉 is trivially maintained. We can also conclude
that if v reduces tok thenΠ(v) = k. From the consistency relation,
it follows thatΓ′; Σ′;∆′ ` k :: b〈n〉, ∆′.

Case [MI]: From static semantics, we have:
Γ;Σ;∆ ` f(v1, .., vp) :: t, ∆ ◦X ρ(φ), and∆ ≈>X ρ(pre(f)). The
second assumption of the theorem is thatΓ, Σ, ∆ |= 〈Π, $〉. There
are two ways in which a call can be reduced, depending on whether
it is user-defined or primitive.

Subcase(D-Call): We chooseΓ′ = Γ + {xi : ti}p
i=1, Σ′ = Σ and

∆′ = ∆. From [MI] type rule, we haveΓ(vi) = ti, and con-
sequently consistency relation continues to hold:
Γ + {xi :: ti}p

i=1; Σ; ∆ |= 〈Π + {xi 7→ Π[vi]}p
i=1〉, $. From

[RET] and [METH], we can also conclude thatΓ′; Σ′;∆′ `
ret([x1, .., xp], true, ρe) :: t, ∆ ◦X ρ(φ).

Subcase(D-PrimCall): ChooseΓ′ = Γ, Σ′ = Σ and∆′ = ∆◦X ρ(φ).
Due to the consistency ofprimOpwith φ, it follows that
Γ′, Σ′, ∆′ |= 〈Π, $′〉. Furthermore, we can also conclude that
Γ′; Σ′;∆′ ` δ :: t, ∆ ◦X ρ(φ).

Case [LET]: There are two rules(D-Let-1) and(D-Let-2) by whiche ↪→
e′ can be derived. We consider each case separately.

Subcase(D-Let-1): From static semantics, we have:Γ;Σ; ∆ ` e1 :: t1, ∆1.
By induction hypothesis, there existsΓ′, Σ′ and∆′ such that
Γ′; Σ′;∆′ ` e′1 :: t1, ∆1 andΓ′; Σ′;∆′ |= 〈Π′, $′〉. The lat-
ter relation shows that consistency relation holds also for the
environment of expressione′. From the [LET] rule applied on
e, we haveΓ′ + {v :: t}; Σ′;∆′1 ` e2 :: t2, ∆2. By applying
[LET] rule one′, we obtain fore ande′ same type and contex-
tual constraint.

Subcase(D-Let-2): We chooseΓ′ to beΓ + {x :: t}, Σ′ to beΣ and∆′
to be∃X ·∆1 ∧ equate(t, t1) ∧ noX (t). From [LET] rule, we
haveΓ + {x :: t}; Σ′; ∆′ ` e2 :: t2, ∆2, such that∆2 implies
final(t). Applying [RET], we can conclude that the types ofe
ande′ coincide. The consistency relation is also maintained:
from [LET] rule, we haveΓ′; Σ′;∆′ ` δ :: t1, ∆′′, and conse-
quently we can conclude this case:
Γ + {x :: t}; Σ;∆2 |= 〈Π + {x 7→ δ}, $〉, where∆2 = ∃X·
∆1 ∧ equate(t, t1) ∧ noX (t).
Additionally, if the value thate2 will reduce to is a location,
then the corresponding resource satisfies its finality constraint.
We obtained that the contextual constraint∆2 satisfiesfinal(t)
from [LET] rule. From the induction hypothesis, we can as-
sume that, after applying [RET] rule, the consistency relation
holds. Specifically the runtime environment obtained aftere2

reduces to a location satisfies∆2. This runtime environment
will also satisfyfinal(t) when the resource will become inacces-
sible. As a consequence, for a well-typed program, the runtime
testcheckfinal is always satisfied and can be safely eliminated.

Case [IF]: Here,e must have the formif v then e1 else e2, for somev,
e1 ande2. We also must haveΓ(v) = Bool〈b〉,
Γ;∆ ∧ b = 1 ` e1 :: t1, ∆1 andΓ; ∆ ∧ b = 0 ` e2 :: t2, ∆2.
There are two rules(D-If-true) and(D-If-false) by whiche ↪→ e′ can
be derived.

Subcase(D-If-true): If e ↪→ e′ is derived using(D-If-true), we know that
Π(v) must betrue and the resulting expression ise1. Choose
Γ′ to beΓ, ∆′ to be∆ ∧ (b = 1) andΣ′ to beΣ. It is obvious
thatΓ′, Σ′, ∆′ |= 〈Π, $〉. We also have
Γ′; Σ′;∆′ ` e1 :: t1, ρ ∆1 and(ρ1 ∆1 ⇒ ρ1 ∆1 ∨ ρ2 ∆2).

Subcase(D-If-false): Similar reasoning asSubcase(D-If-true).

Case [RET]: There are two rules(D-Ret-1) and(D-Ret-2) by whiche ↪→
e′ can be derived. We consider each case separately.

Subcase(D-Ret-1): From static semantics, we have:Γ;Σ;∆ ` e1 :: t1, ∆1.
By induction hypothesis, there existsΓ′, Σ′ and∆′ such that
Γ′; Σ′;∆′ ` e′1 :: t1, ∆1 andΓ′; Σ′;∆′ |= 〈Π′, $′〉. The lat-
ter relation shows that consistency relation holds also for the
environment of expressione′. From the [RET] rule, and the
similarity in typing fore1 ande′1, we conclude that same type
and contextual constraint are derived fore ande′.

Subcase(D-Ret-2): Let us chooseΓ′ to beΓ− {v1, .., vn}, Σ′ to beΣ
and∆′ to be∆. The consistency relation is trivially maintained,
since{v1, .., vn} are excluded from both the type environment
and dynamic stack. Also, from [RET] rule, we can conclude
thate ande′ have the same type.

Proof of progress: By induction on the derivation ofe : t;∆1.
The cases in [Cons1]-[Cons4] are immediate sincee is a value. For
the other cases, we argue as follows.

Case [VAR]: Rule(D-Var) can be applied to reduce a variable to a primi-
tive value.

Case [MI]: This can be reduced by(D-Call) or (D-PrimCall), depending
on whethere represents a user-defined or a primitive method call. In
the former case, a one-step reduction is always possible by the(D-
Call) rule.
However, for primitive method there is the possibility for the failure
of the associated runtime test, making the evaluation to get stuck.
We will assume that the precondition specified by the user and used
by the static semantics (pre(f)) describes faithfully the runtime test
executed dynamically.
We can conclude from the static semantics that∆ ≈>X ρ(pre(f)).
From this fact, together with the consistency relation
Γ;Σ;∆ |= 〈Π, $〉, it follows that the runtime test cannot fail. Hence,
one-step reduction will proceed by(D-PrimCall). This further indi-
cates that for a well-typed program the runtime tests are always sat-
isfied and therefore can be safely eliminated.

Case [LET]: This can be reduced by either(D-Let-1) or(D-Let-2). In the
case thate1 is not a value, we rely on induction hypothesis to make a
reductione1 ↪→ e′1. Otherwise, ife1 is a value, we use(D-Let-2) to
perform a one-step reduction.

Case [IF]: For e to be well-typed,v must be a boolean value, eithertrue
or false. In the first case, (D-If-true) applies, otherwise(D-If-false)
applies.

Case [RET]: This can be reduced by either(D-Ret1) or(D-Ret2). In the
case thate1 is not a value, we rely on induction hypothesis to make a
reductione1 ↪→ e′1. Otherwise, ife1 is a value, rule(D-Ret2) can be
used to perform a one-step reduction.

