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ABSTRACT or memory management) where bugs could have a crippling effect

We present a new method, based on a form of dependent typing, 10N Systems software. - ,
verify the correct usage of resources in a program. Our approach. An example of protocol (expressed as a finite automata) is shown

allows complex resources to be specified, whose properties are capln figure 1(a) for a file system with audit checks. Each file has a

tured by annotated types and conditionsiovariance and final state and must be opened before it is accessed via either read or
states The protocol itself is specified through a set of pre-defined Write: Each write operation must be followed by a read operation

methods, whose pre-condition and post-condition together, enforcefor the_purpose of verifying the previous write. At the end of the
the correct temporal usage of each resource type. We design a simoperations, we e>_<pect each file to be closed, with a node (labeled
ple language together with a type system that shows how resource4) to denote this final state.
protocol verification can be achieved. We formalise an operational
semantics for the language and provide a correctness proof which
confirms that well-typed programs conform to the specified proto-

col of each resource type. read

Categories and Subject Descriptors open close

D.2.4 [Software Engineering: Software/Program Verification -
Correctness proofs; D.3.Pfogramming Language$: Language
Constructs and Features - Abstract data types; FLagi¢s and \
Meanings of Programg: Specifying and Verifying and Reason- read  write
ing about Programs - Pre- and post-conditions; F.Bdgjics and
Meanings of Programg: Semantics of Programming Languages -

Program analysis

(a)
General Terms

Languages, Verification, Theory
resource File(s) st (1 <s <4), (s=4),{s}

KeyWOde newFile :: () — File(s) st (s=1)
e e open :: File(s) — () st (s=1As" =2)
Resource Specification, Protocol Verification, Dependent Type Sys- close :: File(s) — () st (s =2As' =4)

tem, Path-sensitive Analysis, Correctness Proof read :: File(s) — Int(r) st (s =2Vs=3)As' =2
write :: (File(s),Int(r)) — () st (s=2As' =3

1 INTRODUCTION getState :: File(s) — Int(n) st (n=sAs' =s)
In recent years, there have been increasing interests on tools (and (b)

techniques) that could verify important safety properties of soft-

ware, for the purpose of eliminating bugs at compile-time [12, 11,

4, 13, 14]. An important domain for such software verification is in Figure 1: Audit file protocol

the realm of protocols for resources (such as those of device-drivers

Various approaches, based on static analysis [9, 4, 19], have been

advocated for ensuring that user programs satisfy stated resource

protocols. Of particular interests are type-based approaches [11,
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In this paper, we propose the use of an advanced type system

based on dependent typing, to model both resource protocols and

the verification of user programs that use them. In the case of
audit file, an annotated typeile(s) denotes the state of its re-

source, while its protocol can be specified through dependent types

for each of its primitive operations, as shown in figure 1(b). This
essentially captures the pre-condition and post-condition of each
method, allowing user programs to be checked for protocol con-
formance. Take note that we use the prime notation to capture the
post-state. For example, the size variaklesds’ in the constraint
of a given method will denote the state of a file of typae(s),
beforeandafter the execution of the method. In the caseopén,
we require the pre-state of the file be= 1 and the post-state to
bes’ = 2. For thegetState primitive, the integer output captures
the state of the file via = s. As this is a query, the state of the
file is unchanged, denoted explicitly By = s. Note that primed
versions of size variables are not needed for output faxe(s) of
newFile) Nor immutable parameter values (exht(r) of write),
as these values have only a single state each.

The main motivation for proposing such a type system is to pro-
vide anexpressiveandprecisemeans for specifying resource pro-

resourcanvariancethat has to be maintained at all times.

resourcdinality that has to be satisfied whenever a given re-
source becomes inaccessible (dead).

methodpre-conditionwhich captures the requiremedrefore
each method invocation.

methodpost-conditiorwhich captures the expected stafe
ter each method invocation.

Each new resource type can be specified using the following con-

struct:
resource 7(n1..p) St Giny, Pfinal, 1S€t

where{n:.,} denotes a non-empty set of integer-valued size vari-
ables representing the state for resource typwhile ¢;,, and
¢ana are the invariance and finality constraint for each object of
the resource type. The invariance condition essentially limits the
allowable state of each resource type, while the finality condition
captures a mandated state of a resource prior to its disposal. Also,
ISetdenotes a set of size variables that are subject to imperative
changes. Converselg{n..,} — I1Sef denotes the set of immutable
size-variables whose values do not change.

tocols and to verify that programs which use these resources con-

form to the specified protocols. We shall highlight a correctness

proof which shows that such a verification method is sound with

respect to an operational semantics for our programs. Our main
contributions are:

e High precision: We propose a new approach to protocol

specification and usage verification, based on a dependent

type system that isontext; flow- and path-sensitive To-
gether with a relational size analysis in the Presburger arith-
metic domain, they add considerably to the precision of the
proposed verification process.

Resources as ADTsWe model each resource (and its pro-
tocol) as an abstract data type (ADT) with a size-annotated
type, together with corresponding conditions fiorariance
finality andmutability. This specification allows both simple
and complex resource types to be elegantly expressed.

Soundness: Our type system has been proven sound. We

provide an operational semantics for our language and prove
that each well-typed program never violates the protocols of

the resources used.

The remainder of this paper is organized as follows. Section
2 elaborates on a specification mechanism for modelling each re-
source type and its protocol, followed by a simple alias-free lan-

resource Lock(s) st (0 <s <1), (s=0),{s}
newLock :: Int(i) — Lock(s) st (s =0)

lock :: Lock(s) — () st (s=0As" =1)

unlock :: Lock(s) — () st (s=1As’ =0)
getState :: Lock(s) — Int(n) st (s’ =sAn=s)

(@)

resource Buffer(s,c) st (0<s<cAc>0), (s=0),{s}
newBuffer :: Int(n) — Buffer(s,c) st (@ >0Ac=nAs=0)
get :: Buffer(s,c) — Int(n) st (s >0As' =s—1)

add :: (Buffer(s,c),Int(n)) — () st (s<cAs' =s+1)
getNum :: Buffer(s,c) — Int(n) st (n=sAs’ =s)

getCap :: Buffer(s,c)— Int(n) st (n=cAs’ =s)

(b)

resource Array(s) st (s > 0),True, {}

newArray :: Int(n) — Array(s) st (n >0As =n)
assign :: (Array(s), Int(i), Int(k)) — () st (0 < i <s)
get :: (Array(s), Int(i)) — Int(k) st (0 <i<s)
length :: Array(s) — Int(k) st (k =s)

(©)

guage which we have adopted for our study. Section 3 proposes

set of type rules that can be used to verify user programs to ensure
the correct usage of each resource type in accordance with the spec-

ified protocols. The semantics of our language is introduced in sec-
tion 4. In section 5, we highlight the correctness of our type rules

by proving that each well-typed program is guaranteed to be free
of protocol errors. Section 6 discusses how aliasing of resources

can be handled, while section 7 presents some related works. We,

provide some concluding remarks in the last section.

2. RESOURCE SPECIFICATION

We propose to model each resource as an ADT with a set of
pre-defined methods. These methods may change the state of the

Figure 2: Resource protocol specifications

An example of resource declaration is timeitexlock type, de-
clared in figure 2(a). Take note that each lock’s state could either be
0 (unlocked) or 1 (locked). Its sole size-variablmay be changed.
The finality constrain{s = 0) ensures that the lock is released in
the end. Associated with this resource declaration are four prede-
fined methods. Both theock andunlock operations require each
mutex lock to be in the opposite state of its intended operation.
The post-conditions mirror the flip operations performed. We also
provide a query functiongetstate, which allows programmers to
idetermine the status of a given mutex. LastlLock returns a

resources, and must be executed according to given resource pronew mutex (for a specified identifier) in the unlocked state.

tocols.
be captured, including:

Several aspects of each resource type and its protocol can Our next example is a more sophisticated buffer resource, spec-

ified in figure 2(b). In general, this resource cannot be captured



using a finite state model, as the number of states is dependent on Note that the suffix notatiop* denotes a list of zero or more
its capacity (which is unknown at compile-time). Two size vari- distinct syntactic terms. For convenience, we (s® denote both
ables,c ands, are used to denote respectively, tapacityand the value of and as a shorthand for thed() type.
current sizeof the buffer. Its invariance, name{p<s<c A c > 0), Though functional, the language has imperative effects through
is guaranteed at all times. Before each buffer becomes inaccessi-ts resources. In order to avoid aliasing of resources, new (unique)
ble, we require it be cleared witfzs = 0) as its finality constraint. resources are only returned through primitive methods. Further re-
Lastly, s is imperative, while: is immutable. The given set of pre-  strictions to prevent aliasing are enforced by our type system. User-
defined functions must ensure that the invariance of each buffer is defined methods cannot return values of resource type and we nei-
maintained at all times. ther allow the same resource to be passed to different parameters
Our specification mechanism for resource protocol using ADT of each method call, nor allow a resource variable to be used other-
is quite general. Though state changes are typically expected forwise than as a method parameter.
resource protocols, our approach also supports as a special case re- Alias analysis can often be supported separately as an add-on
source protocol whose state never change after it has been creatednodule. An initial proposal on how to handle alias analysis is dis-
A well-known example that falls under this degenerate category is cussed in section 5.
the array data type itself. We could model such an array resource = The RESFP language can be extended with syntactic abbrevia-
by the ADT from figure 2(c), effectively allowing the array bound ~tons to make programming more convenient. Some examples of
check safety problem to be treated as a special case of protocolequwalences are shown below.
verification. m(e1,...,en) =
letvi =e;in (---(let v, = ep inm(vy,...,vn)) -
2.1 Language e ( e
The primary focus of this paper is an advanced type system for
resource protocol and its corresponding soundness proof. For sim-
plicity, we shall focus on a first-order functional language with re- e1;ea= letv=reines
sources, calleResFP. Its syntax is given in figure 3.

if e; then es else ez =
let v = e in (if v then e; else e3)

2.2 Path-Sensitive Relational Analysis

The use of Presburger arithmetic with integer domain has sev-
eral benefits. Firstly, it provides for a uniform and consistent way
to capture both the states of resources and values of program vari-

P ::= rdecl” pdef fdef*
rdecl ::= resource It st ¢iny, Panar, {N°}

pdef:= f:: (t1,..,tm) — tst o ables. Both bounded and unbounded states/values could be cap-
fdefu=f:: (t1,..,tm) — tst¢ ; f(vr,..,om) =e tured by the integer domain. For example, the boolean value, de-
tu=rt | b noted by the annotated typeo1(b), could have its domain bounded
ft = r(nT) by the size constrairi<v<1; with b=0 to denoteFalse andb=1

to denoterrue.

b::=1Int(n) | Bool(n) | Void() | List(n)(b) Capturing all states/values in the same integer domain also al-

ex=k | v|f(vi,.,vm) . lows us to express relational analysis in a straightforward way. For
| if vthene; elsees | letv = e ines . .

] ) example, the latest state of a fite1e(s) may be tightly coupled
pe F (Presburger Size Constraint) with an integer program variabtet (i) via a disjunctive formula
pu=Blo1 AP d1 V2| ¢ |In-¢|Vn- o (s'=4Ai= — 1)V(s'#4Ai>0). Disjunctive formula may arise from
3 € BExp (Boolean Expression) different branches of conditions. Such relations are directly sup-
B = True| False| a1 = as | o1 < a2 | a1 < oo ported by the Presburger arithmetic form.

Presburger formula also allows us to support path-sensitive anal-
ysis where each path is marked by the boolean values of the tests
from conditionals taken. This correlation of program states with
) . } paths from conditional construct supports more precise relational
n is asize variable analysis. It also allows infeasible paths to be identified whenever
v is a program variable the size constraint evaluatesHal se.

These features of Presburger form in integer domain allow more
precise program states to be captured. As we have seen with the

Figure 3: Syntax for the REsFPlanguage buffer example, we are able to model the protocols of resources
with unboundedsymbolic states. Let us look at two other exam-

Each program contains declarations for resources, primitives andples, involving conditional and recursion, that will help reiterate
user-defined methods. As already illustrated in our examples, eachihe iility of path-sensitive relational analysis via dependent typ-
primitive method declaration has the form: ing.

Consider a functiom that takes a flag and a mutex lock, as shown

fu(tl, tm) — tsto in figure 4(a). Based on the value of the flag, it either performs a

locking or does nothing. To capture this path-sensitive behaviour,
wheret,, .., t,, andt are annotated types for parameters and result, e can declare the type for as follows:

respectively. The size constraiptcaptures both the pre-condition
and post-condition of the method. £ :: (Bool(b), Lock(s)) — ()

To support dependent typing, our types and methods are aug- st (b=1As=0As'=1)V(b=0As"=5)
mented with size variables and size constraints. For size constraintyake note that theisjunctioncaptures two cases, namely: (i) when
we restrict it to Presburger form, as decidable (and practical) con- flag is true and the lock operation is performed, (i) when flag is
straint solvers (e.g. [23]) are available. false and no operation is performed. Each use of tHisnction

a € AExp (Arithmetic Expression)
ax=c|n|ecxalar+az| —«
wherec is an integer constant




f(flag,r) = if flag then lock(r)
else ()

@

addMany(b,n,val) =
if n <O then ()
else
add(b, val);
addMany(b,n—1, val)

(b)

3.1 Notations

We begin with a review of some notations used. Let us de-
fine v to return all free size variables in a formula. For example,
V(z' =2+ 1Ay =2) = {z,y, z}. We also extend the definition of
Vto annotated type, as well as type environment.

The functionprime takes a set of size variables and returns their
primed version. For examplerime({s1, .., sn}) = {s},..,s,,}. We
extend this to apply to annotated type (and type environment) by re-
placing their imperative size variables with primed counterparts, as
follows: prime(t) = pt wherep = [s — s’ | s € Z(t)] andZ(t) de-
notes the set of imperative size variables from the tygée func-
tion primeis also defined for substitutions as follows:

primez — a,y +— b] = [2’ — o',y — V']

Figure 4: Two user functions

Often, we need to express a no-change condition on a set of im-
perative size variables. We define& operation as follows which
returns a formula for which the original and prime variables are

is expected to satisfy its pre-condition, which can be obtained by made equal

quantifying (existentially) the size variables of the result and post-

Fites Foreample noX({}) =aqr True  ne’({z} U X) =45 (&’ = x) AnoX(X)

3 (b=1As=0As'=1)V(b=0As =5))
=0

=(b=1As=0)Vb This is extended to types usimgt (t) =4 not (Z(t)).

We introduce a sequential composition operatitvay ¢, to cap-
ture a size constraint that is being composed with an incremental

Recursive functions (and therefore loops) may also be handled changes whereX = {si, .., s,} is a set of size variables that are -
in a path-sensitive manner by our proposed dependent type systemP€ing changed. This operation can be formally defined as follows:
In this case, the pre-condition to recursive functions must be strong ,
enough to ensure that all calls to each resource primitive be safe. Aox ¢ =g 3D - p'(A) Np(e) .

Consider the functioadaMany in figure 4(b), which would add an where D = {ri,..,rn } are new size variables
integer valuen times to a given buffer. To ensure that &k prim- p=lsi = riliny s ol = [sp = il

itive calls are safe, we require the following dependent type for An example of sequential composition is considered next. Assum-

addMany. ing that the current size constraint(i§ = 5 A 2’ = z + 6), and the
. incremental change which affects variabjesy} is
addMany :: (Buffer(s, ¢), Int(n), Int(v)) — () (y =z +1A2' = 10), we can obtain the updated size constraint
st (s+n<cAs' =s+n) via :
The pre-condition for this function, name(g +n < ¢), ensures (' =5N2 =z +6)op,,} (¥ =z+1A2" =10)

that we have enough space to add a given valtimes into the
buffer. Correspondingly;s’ = s + n) indicates a precise post-state
after each successful execution of the method. Let us now look
at the type rules that can help verify if user programs conform to
stated resource protocols.

=3z0,y0- (o =5A2' =2+6)A (¥ =z0+ 1Az =10)
=(F'=z4+6Ay =5+1A2" =10)

3.2 Type Rules for Verification

Each progran consists of declarations for resources, primi-
tive methods and user-defined methods. The program judgement
3. TYPESYSTEM Fprog P (depicted in figure 5) checks respectively the resource dec-

There are two key areas to verify for resource protocols and their [arations, primitive methods and user-defined methods by using the
user-programs, namely: following three judgements:

Fres TdeCli, i€ {17‘}
'_pri,m pdEfi, i€ {lp}
Fmetn fdef;, i € {1..q}

e Protocol verificationto ensure that each resource protocol
(comprising a set of predefined methods) satisfies some stated

resource properties (e.g. invariance, liveness, fairness, etc).
The rule [RES] for resource declaration checks that only the size
e Usage verificatiorto ensure that user program uses the re- Variables of the declared resource are used in its three components,
; ; namely invariance, finality and set of imperative size variables. We
sources in accordance to the respective protocols. also provide the following functions to extract these components:

Traditionally, much interest have been devoted to certifying that
protocols meet some stated properties[12, 1]. In recent years, new
techniques [13, 11] have been developed also for the latter. This inv(b) =, True
paper is mostly concerned with usage verification, as we treat each
resource as an ADT. However, as we shall see later (in the type rule
for primitives), we do in fact also verify the protocols themselves
by checking that the respective resource invariance is maintained final(b) =4 True
by the post-conditions of each predefined method.

We shall present the proposed protocol verification mechanisms
in a type-checking framework whereby type annotations are sup- Z(b) =4 {}
plied at method boundary.

resource 7(m1..p) St Giny, Pfinal, 1S€tE P
P = [ml = ni]izl

inV(T<n1,,p>) =df p¢zn'u

resource 7{(m1..p) St Ginv, Pfinal, 1S€LE P
p= [m,L [d ni]le
final(r(ni..p)) =df P Pfinal

resource 7(m1..p) St Giny, Pfinal, 1SEtE P
p=[mi = nili_,

I(r(n1..p)) =a p1Set




[PROG]
Fres Tdecl;, i€ {1..r}
}_pr’im pdefi7 (XS {1"p}

'_meth fdefiy RS {1.4(]}

[RES]
X =V(rt) ISetC X
V(¢imr) g X V(¢ﬁnal) g X

Fzmw rdecly. Pdef1..p fdefl..q

[PRIM]
Xu = Z:l(v(ti) —Z(t:)) U V()
Xp =U;1 (Z(t:) U prime(Z(t;)))
1/)/\(1)»1(1,1) inv(t,;), i€ 1l.p VAP = inv(t)

V(¢) C Xy UXp
= AP_; inv(t;)

Fres resourcert st giny, Gfinal, 1Set

[METH]
= {vy:t1,..,0p i tp}
—isResourceTye) DiAFext/ Ay
Ft'<itp Af=>po

A = pre(f) AnoX(T")

Fprim f = (tla ~:tl?) _>tSt¢

[coNsi] [coNsz2]
s = fresh)
A=A A'=AN(s=n)

chth f = (t17 ~~atp) —t Std);f(’Ul, '-:'UP) =e€

[conss]

s = fresh()
A =AAN(s=1)

[coNs4]
s = fresh)
A =AA(s=0)

;A F () Void(), A’ ;A Fnc:Int(s), A/

[vAR]
T(v)=t —isResourceTy[e)
t’ = freshit) ¢ = equatét’,t)

I'; A+ true :: Bool(s), A’

fu(ty, . tp) = tsto e P
D(vy) =t;, i€l.p
X:Ulel(tg)

, I'; A I false :: Bool(s), A’
(1]
t' = fresh(t) Ftl<:ts, pi
p = (pi Wprime(p;));_, & renamét, t')
A =>x p(pre(f)) distinct{v; | isResourceTyge;)}

TAFv !, AN

[LET]
AR ep it A t/1 =freS|’(t1) s
Al =p VA AnoY(ty) Y =V(th) Uprime(Z(t)))
Loty Al Fegita, A Ao R 1(th) final(t})

Fti<:t),p

F; A f(’U], --avp) = t,7 A ox p(¢)

(1]
I'(v) = Bool(b)
TAANb=1Feg t1, 4 T;AAND=0F e i ta, A
t =fresh(t1) p; =renamét;,t), i =1,2

TsARletv =epineg i tg,3Y - Ao

T AFif vthene; elsees :: t, p1 A1 V paAg

Figure 5: Type rules

The rule [PRIM] for primitive declaration assumes that the in-

of the supertype, to their respective counterparts from the subtype

variant property is present for each parameter at the pre-state (through Formally, the subtype relation is defined as follows:

). It uses this assumption to check that each resource satisfies its

invariance at the post-state of the callee. Also we Xgeto rep-
resent the set of size variables that are imperative ,gndor the

set of size variables that are either immutable or appear in the re-
turn type of the method. The variables used in the size constraint
¢ should be confined to the union of these two sets, as the primed

version of the variables fromy; is not allowed. The relatior> x

p = [ni—milp_,

Fr(mi. p)<:r{ni.p),p

p=Inm]
F b(m)<: b(n), p

The type judgement for expressions is of the form:
;AFent,A

is used to check the validity of some condition, and is defined as Wherer is a variable environment mapping program variables to

follows:
Ar>x ¢ =4 (A= po)
where

p=[s1+—8],..,8n — s,]andX = {s1,..,5n}.

Take note that the operates- is equivalent with the usual logical
implication: A =y ¢ =45 (A = ¢).

The rule [METH] for method declaration first builds, an ini-
tial size constraint that is used to derixg as the post-state of the

their respective annotated types(A’) denotes the size constraint,
which holds for the size variables associated wit{l" and¢) for
expressior: before (after) its evaluation;is an annotated type.

Our type judgement generates types with fresh size variables.
This facilitates the quantification of dead size variables at suitable
junctures. (Dead size variables belong to intermediate expressions,
neither from type environment nor from the result, of each type
judgement.) In the above, we use the functiesh) to generate
new size variables. We extend this to annotated type: the result

method body. The initial size constraint contains the assumption Of fresh(t) has the same underlying type@and is annotated with
that the pre-condition of the current method is satisfied. Subse- fresh size variables.

quently, the post-state that is derived must satisfy the declared size The rule [VAR] uses the functioequatét:, t-) to generate equal-
constrainty, of its method. The pre-condition of each method can ity constraints for the corresponding size variables of its two ar-

be extracted by the functiopre, by existentially quantifying both
primed and size variables that appear in the return type.

f (b, .tp) —tstoe P X =P, prime(Z(t;)) U V(t)
pre(f) =ar 3X - ¢

guments. For example, we hastguatéInt(r), Int(s’)) = (r = &’).
Occasionally, we may return a substitution using the following func-
tion: renaméInt(r), Int(s’))=[r — s’]. Note that botlequatgt;, t2)
andrenaméty, t2) succeed only in the case thatandt, share the
same underlying type. This check is necessary for the source pro-

As described earlier, we avoid aliasing by imposing restrictions on gram to be well-normal typed.
the usage of resource variables. These restrictions are enforced in The rule [MI] is used for invocations of user-defined or primitive

the type system by the functiaeResourceTypaVe also make use
of a subtype relatiom- ¢;<: t2, p, which forces same underlying
types fort; andts, and returns a mappingfrom the size variables

methods, whereby their type information is retrieved from the pro-
gram (available globally aB). Subtyping is used to generate a sub-
stitution on size variables from formal to actual arguments. Each



method invocation includes as a safety check on the pre-condition
of ¢. It also ensures that all arguments of resource types are distinct

to prevent aliasing using Locations: € Location
L . o Primitive values k€ prim = Int W Bool W Void
distinct{z1, .. zm} =4 (vi,j € Lom i #j = z: # 2;) Values: 6 € Value= primw Location
The rule [LET] extends the type environment with a new local ~Resourcetypes rt < ResType= (name (Svar))
variable for the next expressio,. The subtyping rule- ¢t1<: /, p Resource values r € ResVal= (ResTypgSVar—iin Int, AbsVa)
returns a size variable substitutipfirom the type ofv to e;’s type. Variable Env: II € VEnv= Var—gy, Value
We apply the inverse substitutigir! to the size constraint col- Store: w € Store= Location—f, ResVal

lected frome;. Note that we have added a check at the end of the
scope to ensure that each local variable satisfies its finality con-
straint when it become.sllnaccessmle.. . ... _variable environmentil is such a mapping. We writ&[§/v] to

The rule [IF] for conditional expression introduces apath-sensltlvedenote an update of the variabi@n I1 to 5. We writeIl + {v > 5}
analysis for the size constraints at the two branches, which are ’[hento denote an enhancement afto includé a new binding of to

combined with a disjunction. v. Similar notations are used for the update and enhancement of

3.3 How Is Usage Verification Achieved? resource value and the store,

) i ) The dynamic evaluation rules are of the following form.
Our type-checking rules make use of the current size constraint,
A, to perform necessary checks for protocol conformance. This (I, @) [e] — (I, ') [¢]
constraint captures the states of both the resources and the other
variables in relational form. If type-checking succeeds, we also gycant for the primitive call, the other evaluation rules are standard
derive an expected post-condition for the given expression. To il- . . ;
lustrate this idea, consider the type-checking of an expression for 21d We include them in the appendix.

Note thatf : A —, B denotes a finite mapping fromto B. The

which x is unlocked, but nothing is known about and where [D—Primcan]
I' = {x :: Lock(s),y :: Bool(b)} andA = (s = s’ A s’ = 0). Under
this scenario, type-checking fails as we may perform another un- fu(t, . tp) > tste e P isPrim(f)

lock on a mutex that is already in the unlocked state, as illustrated (7 5 flag) = primOp(, [lI(v1), .., TI(vp)], =)  flag = true
pelow. ML) [fCr, )] — (0L =) [

I AAb=1F unlock(x) :: ILL-TYPED!
I;AANb=0F lock(x):: (),s=0As' =1Ab=0 [D—Primcall—Error]
;A F if y then unlock(x) else lock(x) :: ILL-TYPED!

However, if we would use a stronger context = (s = s’ A s’ = OA Filty,otp) ~tsto € P isPim(f)  flag = false

b = 0 wherey is known to be false, the judgement would succeed. (=', 6, flag) = primOp(f, [1(v1), .., [(vp)], @)
Furthermore, our type-checking rule would compute a new post- (Il, @) [f(v1,..,vp)] < Error_Usage
gor}ﬂition wn_ich indi(t:a;gs that will beclome Io;):ked, aair:di(t:ﬁtfd
e resulting context\, = (s =0A s’ = 1 Ab=0). Note thal . . .
Fglsedenotes tﬁe context of a(n infeasible path (or ()jead code). Take note thaprimOpis assumed to include checks which ensure
thatpre(f) is satisfied, and that the necessary changes have been
T; A1 Ab=1F unlock(x) :: (), False made to storep’, to also satisfy. If the primitive’s precondition is
L5 A1 Ab=0F Tock(x) :: (), Ag not satisfiedprimOpis expected to return#ise flag to signify that
I'; Ay b if y then unlock(x) else lock(x) :: (), Az an error has occurred. Correspondingly, the evaluation becomes

stuck withError_Usagevalue. We will prove that for a well-typed
program this situation cannot happen.

As an example, we also specify tipemOp definition for two
primitives from the buffer protocolnewBuffer andadd. We do
not provide any type rules to check such primitive definitions of
our operational semantics, but shall assume that they adhere to the

As another example, consider the following where {x :: File(s)},
and the initial context i$s’ = 1). Note how the size context is be-
ing updated/propagated flow-sensitively through the sequence of
expressions.

I 8" = 1+ open(f) :: (), s' =2 requirement stated above. Each resource value is made up of a re-
, , source type, its state, and an abstract value that is dependent on the
Iy s'=2F reaji(f) i Int(r), s’ =2 , actual implementation of the resource. The state of each resource
D,v i Int(r); s =21 close(f) :: (), 8" =4 is a mapping for its size variables, which essentially provides an
I'; s =2F let v =read(f) inclose(f) :: (),s' =4 instrumented semantics for resources.
I; 8" = 1F open(f); (let v = read(f) in close(f)) :: (), s’ =4

[newBuﬂ‘er]

v = fresh() a = newBuffer(n)
w’ =w+ [t — (Buffer(s,c), [s — 0,c+ n],a)]
primOp (newBuffer, [n], @) =g¢ (@', ¢, (n > 0))

4. INSTRUMENTED SEMANTICS

We shall now define for our language an operational semantics
that has been instrumented with the state of size variables. Instru-
mentation has been added to facilitate the correctness proof of our
. . - o [add]
type system given in the next section. Its addition does not af- ~——
fect the underlying semantics of our language, as we can show
net equivalence between the instrumented and underlying seman-
tics via a bisimulation. :
Notations used are defined below wiar and SVarto denote pPrimOp (add, [t, n], @) =45 (@, (), (ns < ne))
the domains oprogram variablesaindsize variablesrespectively.

w(t) = (Buffer(s,c), [s — ns,c— nc],a) o' = add(a,n)
w’ = w|L+— (Buffer(s,c),[s — ns+ 1,c+— nc],a’)]




5. SOUNDNESS OF TYPE SYSTEM location corresponds to a new, unique resource, and its invariant is

We shall now provide a correctness proof for our type rules. added to the contextual constraint.
Given a well-typed program, our safety theorem guarantees that

usage violations never occur. Resource Value [REs-vAL]
For this purpose, we extend the static semantics of the language
with the introduction ofstore typingto describe resource types at s; = fresh() d=NA_ (ni =si)
each store location. This ensures that objects created in the store T8 AF (r(nip), p, @) = 7(s1.p), A A pd
during runtime are type-wise consistent with those captured by the
static semantics. In our case, it is denoted by: Note that the derived constraint is precise, as it uses the values

from the runtime environment.
After introducing the additional type rules, we formulate the
soundness of our type system by proving two key properties, for-
Store typing is conventionally used to link static and dynamic mulated as preservation and progress theorems.
semantics [22]. We also introduce a consistency relation to say

3 € StoreType= Location— ResType

that the runtime environmenll, ) is consistentwith the type THEOREM1 (PRESERVATION).
environment(I', &, A), written I'; ; A = (II, w), if the following
judgement holds: (a) (Value) If
Ty ARS A
dom(IT) = dom(T")  dom(S) = dom(w) X =I(I) I35 A | (I, w)
Vo € dom(I) - T'; 3 True k- wvalue(Tl(v), @) :: tv, Av then the following holds wheteis fresh:
C = Nvedomn (Do A equate(prime(I'(v)), tv)
3X.C = 3IX.A F+{z:th3S A E I+ {z— d},w).

I35 A = (I, w)
. (b) (Expression) If
The judgement captures the fact that the latest values of stack
and store are consistent with the final values captured by the static

context,A. Functionvalue(s) is defined as follows: [ A et A

[;35A E (I, w)

value(Il(v), w) = k, if II(v) =k o) Tel s (1. ') le
value(Tl(v), @) = w(t),  if M(v) =1 (1, ) [e] — (1", @) [€']

) ) ) then there exist&’ D 3, IV, andA’, such that
Type-checking rules will be extended to use the store typing, as
follows: T'; X A b e o ¢, AY. . . I’ -local(e') =T - local(e)
We require additional intermediate expressions for use by the AV NANIN
dynamic semantics. The syntax of intermediate expressions is thus I 25 €t A
extended from the original expression syntax as follows. I8 A IV, ).

en=...|ret(vib,e) |t . . .
The preservation theorem characterizes the result of evaluation:

The expressiorret(v;b,e) is used for capturing expression in a if a well-typed term takes a step of evaluation, then the resulting
local block, or in a method invocation, after the stack has been term has the same well-typedness (modulo renaming of size vari-
extended. The list of variables associated wigh contains the ables). Furthermore, the resulting runtime environment is consis-

. : tent with the static context captured by the type judgement. The
local variables declared and already allocated in the stack. Thetheorem uses the functioacal(e) which returns the set of vari-

newly introduced expression allows us to unframe the stack when gpjes from the part of the stack that will be de-allocated dutisg

the block has been completely evaluated. The #leggused to in- evaluation. Its definition follows:
dicate whether theet expression originates from a local block.
In this case, if the variable denotes a resource, the semantics will local(e) = casee of
check whether the finality constraint is satisfied when the scope of ret(v”, b,e) —  {v"} Ulocal(e)
the variable is terminated. The type-checking ruledet(v* b, e) letv = e in €2 — local(er) Ulocal(e2)
; if vthene; elseea  —  local(e1) Ulocal(ez)
expression follows. 5w | fw*) — 0
Return: [RET]
T(v;)=t; X =U; {V(t:)Uprime(t;)} THEOREM2 (PROGRESS. If T;S;Ake:t;Ar and
[SAFent,Ar Ay =3X.A I';3; A | (11, @), thene is either a value or there exist’ and =’
L5 Ak ret([vr, .., vn], by€) i1 £, Ag such that(Il, @) [e] — (I, @) [¢/].

We also provide type-checking rules for locations and resource val-
ues. The latter one will be used for the consistency relation of the  The progress theorem states that a well-typed term is either a
runtime environment with the type environment. value or it can take a step according to the evaluation rules.
Location: [Loc] Using the above theorems (proved in the appendix), we can prove
that a well-typed term can never reach a stuck state during its eval-
uation (or reduce to amrror_Usage value). Specifically, the pre-
condition of each primitive is satisfied by the states of the resources
Because location expressions are not included in the source lan-maintained in the runtime environment. Also when resources be-
guage, they can only appear as a result of reduction rules, specifi-come inaccessible, they satisfy the finality constraint according to
cally when a primitive call reduces to a location. In this case, the their type.

() =r(n.p) si=Tfresh) p=[ni—sil]
Ty AR cr(stp), AN p(inv(r(s1..p)))




[conUL]
[consumeU] F < T, P v ¢ OUA
d= ({v} <ann(t’) =UAann(r) #L > 0)
vg® d={v}<ann(r) =U>0) g=({v} <ann(t’) =UAann(r) =L >0)
O + consumelU (v, 7),© Ud O,\, VUt conUL(v,7",7),0Ud,AUg,¥ W p
[A-METH]
I'=A{vi71,.,0p :Tp} A = pre(f) AnoX () [A—wmi]
DA Qe 1 ,Af,© Fri<iT,p Ar=po fu(m,.,mp) =TSt eP 7/ = fresh(r)
ann(t) #L Vi€ l.p.(ann(r;) =L) = v; ¢ © I(v;) =7/, i€l.p X =U",Z(7) Ao=10 po =[]
test; = (final(r;) < ann(r;) =UAv; ¢ ©>True), i€ 1l.p ©i—1,Ai—1,pi—1 't conUL(vy, 7/, 7:), 04, Ai, p; i€1..p
Ay Rorr) N, test; p = pp W prime(p,) wrenamér, ') A x> p(pre(f))
Frune £ (11, .., 7p) — 7/ St s f(vr,..,vp) =€ ;0500 Ff(vr, .., vp) T, A ox p(0),Op
A-LET]
A0 er 7, A1,0, 71 = freshX7y, A) Fr<iTy,p
[A—VAR] Al = (3V(r1) - p~ L A1) ANGY(r]) Y = V(r!) U prime(Z(r!))
T,v:7]; Al;01 e 1o, Ag, O2
Fv)=r O F consumel (v, T), ©' test = (final(r]) <ann(r1) =UANA=UAv ¢ Oz > True)
7/ = fresh() ¢ = equatér’, ) Az R>7(ry) test
AOFv T/ AN, O IA;OF letv@A =ejineg it 72,3Y - Ag, 02
Figure 6: Alias-annotated type rules
6. DISCUSSION alias of an annotated type, we use(t@A) = A. Furthermore, we
For simplicity, in the previous sections we have applied language US€ the following partial ordering among annotations:
restriction to ensure that every resource is unique. While this sim- A<:A  U<:S U<l

plifies our type system and its correctness proof, it restricts the set

of programs that could be accepted. For a more practical systemNote that this ordering allows each unique resource to be transferred

we may instead rely to an alias analysis technique to help distin- El%atlrlggl?ﬂg? ﬁ':f)'ﬁénctesftvr\',ﬁggarggr%rn'gg mgd'?{;/‘g Qgé‘rq'ggr‘]’gfﬁ?é q

guish unique resources from possibly shared ones. by such trar?sfers,lwe require our type judger¥1ent to be augmented
A common technique for handling shared resource is tougsk with a set of unique resources whose uniqueness have been con-

updateson the states of these potentially aliased resources [11, 13, sumed. We call this theonsumed setlenoted byo, and track it in

24]. (A weak update occurs when the state of a resource is be-a flow-sensitive manner using the following judgement:

ing changed froms; to s2 such thats; <:s2. In other words, the

state of such a shared resource may become less precise and is not

aIIow_ed to be arbitrarily changed.) However, this approach limits gach unique resource may only be consumed once, but could be
the kinds of operatlor_ls that share_d resources may bg subjected totemporarily (and separately) borrowed out multiple times by lent-
To compensate for _thls, we describe runtime mechan_lsms to checkgnce parameters. Our extended type rules presented in figure 6
for safety preconditions on shared resources and their finality con- se two auxiliary functions to check that these conditions are satis-
straints. _ , fied. The first functiongconsumel, ensures that uniqueness is not

_ Inthis section, we explore the use of a simpler alias type system, ¢onsumed twice, whileont/ L function checks that, at each time
inspired by the work qf Aldrich et al [2]. Consequently, we USe instance, a unique argument can be lent at most once.

U, SandL to denote unique, shared and lent resources respectively.  Resource parameters of primitive methods are usually annotated
Unique resources are not aliased and can be accurately trackedgg |ent: this allows the primitive method to perform state changes,
while shared resources may have global aliases. Resources in lenfyjle assuming that no aliases are created during its execution.
mode are restricted to formal parameters whose references do nokjnce state changes should be allowed only on unique resources,

;A;0FeT, A0

escape their methods. the alias subtyping relation disallows a shared resource to be passed
In order to track the state changes for lent resources, we Useag an argument to a lent parameter.
a restricted form of lending naméent-once(or limited unique), To accommodate with shared resource argumentgnérolled

whereby each unique (or lent-once) resource is only allowed to be form of primitive operations is used. Primitive operations cannot
passed to a single lent-once parameter for each method call [5, 7].make any assumption about the imperative size variables of their

This restriction is meant to facilitate state change without aliasing ?hare% argkuments. Ilztor thits cafse, contr;l)lltetd primitives(jir;plude ILU?
problem, and can be statically checked. ime checks as an alternative for compile-time preconditions. Fol-

For each resource type, we annotate it with an aliaas fol- lowing the example from figure 2(b), we introduce the following

lows r(ni.,)@A whereA = U | S| L. Since imperative effects are primitive operations:
present only for variables of resource type, other types can be anno-
tated as shared without any loss in precision. Alias-annotated types 2 . .. Butfer(s,c)@S— Int(n)@S st True

are denoted by, to distinguish them from types without alias an- idd . (B.L.1ffer<s C>’@L Int(n)@S) — () st (s < cAs' =s+1)
notations used in previous sections (denoted)byTo extract the 2ddCHK - (Buffe’r<s’ c)@S, Int(n)@S) - () st True

get :: Buffer(s,c)@L — Int(n)@S st (s >0As’' =s—1)



Take note that the post-state of bef#rCHKk andaddCHK primi-
tives do not capture the state change for their shared argument, as
denoted by the size constrairitue.

To handle aliasing annotations, type rules are changed accord- (a)
ingly: rules for method declaration, variable, method invocation
and let block are presented in figure 6. Similarly, the subtyping
relation is extended to handle possibly shared resources.

let bQU = newBuffer(10) in
add(b, 1); add(b,2); get(b)

let bQU = newBuffer(10) in

p=[n+—m] A1 <A p=(pr QA2 =SD pr Wp1) add(b, 1); add(b,2);
Fb QS<: b< >@S - < >@A <: < >@A let b1@S = b in
<m> 1 o{n 5 P r{mi..p 1<:7(N1..p 2,p (1et b2GS — b1 in
where getCHK(b2) ); getCHK(b1)
pr = [mi = ng), ng € V(r(n1.p)) = I(r(n1.p)) ®)

pz = [m; = ny], i € I(r(ni..p))

This relation returns a substitution that links size variables from

subtype with those from the supertype. Intuitively, if the supertype Figure 7: Finality checks
is annotated as shared, only immutable size variables can be re-
tfriehved from the subtype (az indicated by)l. On tghehother halr;ld, d
if the supertype is annotated as unique or lent, both immutable an P : :
imperative size variables are equated with those of the subtype (as The second example uses a cqmblnatlon Of.St.at'C and dynamic
indicated by the substitutions  p7.) We use the following func- checks to ensure that thg code in flggre 7(b) satisfies the buffer pro-
tions to generate types with fresh size variables: tocol. A reference-counting mechanism is used to detect where the
last reference to the resource becomes inaccessible, to enable a run-
time check for the resource finality. The initial unique reference

becomes inaccessible when its uniqueness is consumed. However,

freshit@A)
freshAtQA, A1)

(fresh(t))@A
(fresh(t))@A;

Also, conditional is expressed as< b > &2 =g { &, if by two references to the buffer resource are shared via variables
’ f U &, otherwise andb2 and, when both of them become inaccessible, the finality
Other functions previously defined in the section 3.1 can be ex- constraint is checked and satisfied (the buffer is empty).
tended easily to handle alias-annotated types. The two invocations okdd primitive can be proven correct by
Compared to the previous section, the rule [A-METH] for method our type system. The flow sensitivity of the alias type rules, allows
declaration checks additionally the finality of arguments. Also,  the same resource to be viewed as unique for the first part of its
L arguments cannot be consumed, since their uniqueness is to beifetime (via variableb) and as shared afterwards (via variables
returned to the caller. andb2).

The rule [A-VAR] allows variables of resource type and primi-
tive type to be treated similarly without restrictions.

In the rule [A-MI], arguments of resource type are checked for
consumed uniqueness (this check subsumes the check for distinct-7- RELATED WORK
ness), and must adhere to the alias subtype relation. In recent years, several type-based approaches [11, 13] have been

In our protocol specification, we require each resource to sat- advocated for verifying user programs conformance to resource
isfy its finality constraint prior to its disposal. Previously, this was protocols through tracking the states of resources. They specifi-
checked only at the rule faret construct, where the (unique) re- cally cater to protocols expressible as finite state models and do not
source becomes inaccessible. allow checking for resource finality. In CQual [13], qualifiers were

In the presence of aliasing, for each possibly shared resource, weadded to C-type to track their states through the operations of se-
must now also allow the finality constraint to be checked at runtime, lected protocols. This tracking is done automatically for user pro-
since statically it is not possible to determine when the resource grams in a flow-sensitive manner. In Vault[11], programmers are
becomes inaccessible. Thus, if a local declaration denotes a share@xpected to add annotations to help check that device drivers are
resource, we require at runtime a finality test (in the construct) being used correctly. Annotations include alias and linearity infor-
to check if the shared variable is the last active reference (a run- mation and also a special variant type to provide path-sensitivity to
time mechanism could employ reference counting). Consequently, the analysis. As a downside, the programming style is less flexible,
any non-compliance of such a finality check will be reported as a since both branches of a conditional have to agree on the resource
runtime error. states. Both CQual and Vault are to be supported by alias analysis,

For a unigue resource, we will continue to perform its finality where shared objects are limitedweak updatesn their states.
check at compile-time. A unigue resource may become inaccessi- Another approach to the problem of resource verification is to
ble at three possible places, namelyi@x construct, (i) method use dataflow analysis. ESP [10] was designed to analyse file errors
declaration or (iii) at a branch of conditional. Here, each unique in C programs and does not require user annotations. Their analysis
resource that is not already consumed, will become dead thereafteiis path-sensitive and has polynomial complexity, analyzing only
and their finality must be correspondingly checked. On the other relevant branches taken by the state automaton transitions. On the
hand, if the unique resource is consumed, the obligation to satisfy downside, ESP is able to track only one resource at a time, limiting
its finality is transferred together with its uniqueness. the set of properties that can be verified.

To highlight our technique, we introduce two examples that use  Igarashi and Kobayashi [18, 19] proposed a general framework
bounded buffer resources. For the first example from figure 7(a), for resource usage analysis to infer usage patterns of resources. The
the finality constraint can be checked at compile-time because theusage pattern is expressed as a trace that is checked against the
resource maintains its uniqueness. This example is ill-typed, sincedeclared resource protocol (also specified via a trace.) Similar to
the finality of the resource is not satisfied at the end of the let scope: the above mentioned type-based methods [11, 13], but unlike our
when the buffer becomes inaccessible, it is not empty. approach, resource usage analysis is not designed to capture value-



dependent behavior of programs. We found this to be crucial in 9.
refining our path-sensitive analysis. [1

Other trace-based approaches [9, 21] aim to enforce a safety
property onto a source program by adding dynamic checks where
other static analyses would reject a program as unsafe. Fradet et
al [9] analyze the usage traces at compile-time to minimize the
number of required runtime tests. Similarly, Marriott et al [21]
employed context free languages to capture usage patterns which 2]
are then checked against protocols expressed via regular automata.
However, by mapping entire programs to automata, and performing
transformations and analyses on these automata (in a manner simi-
lar to whole program analysis) these approaches lack modularity.

To allow more properties to be checked at compile time, Mandel- 3]
baum et al [20] devised a general theory of type refinements. They
use a fragment of intuitionistic linear logic for local reasoning on
program state. The properties that they reason about are divided in
persistent and ephemeral facts which are similar to our immutable
and imperative sizes of resources, respectively. However, values are
given singleton types and there is no provision for handling shared
resources. Their predicate logic is expressive, but their system is
unable to express protocols with unbounded (or symbolic) number
of states like the buffer resource protocol. Furthermore, relational
analysis between program variables and resource states is not di- [5]
rectly supported.

(4]

8. CONCLUDING REMARKS 6]

Traditionally, dependent type [25, 17, 6] has been advocated for
size analysis and used in applications, such as termination anal-
ysis[27, 3], array bound checks elimination[28, 8] and memory
space analysis[16, 15]. Through Xanadu[26], it has recently been [7]
extended to imperative languages where variables may change val-
ues, but objects created are presently capturedsineaimmutable
way so that aliasing is not an issue. However, resources are in-
herently stateful. We have shown that this aspect can be tamed [g)
with the help of language restriction, so that aliasing is not an is-
sue in the presence of mutability. Nevertheless, we also highlight
a more sophisticated solution which tracks aliasing and uses a run-
time checking mechanism to allow shared resources to be properly 9]
handled. Furthermore, our approach can cover a wide range of re-
source protocols, including those with finality requirement prior to
the death of its resource.

With this enhanced dependent type system, we have designed ?10]
new solution to the protocol usage verification problem, and have
also proven its correctness. Our solution is both precise and ex-
pressive as it is able to capture a wide range of resources and their
protocols. We have presented our approach within a type-checking[ll]
framework. Extension to an inference framework should be feasi-
ble, and could follow the approach taken for array check optimiza-
tion that was recently proposed in [8]. Under this approach, we
may introduce runtime tests into locations where protocol safety
cannot be guaranteed, further extending the scope of our method.[lz]
Our adopted language is simple, and we have exploited this to for-
malize a provably correct resource protocol verification technology.

[13]
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[ty tp) > tste; fur,..,vp) =e€P

B. PROOFS

Proof of preservation: (a) After extending both the dynamic stack
with a values, and the type environment with a fresh variable of
&'s corresponding type, the consistency relation continues to hold
assuming two hypotheses: the non-extended versions of the type
environment(I") and dynamic stack are also consistent, and the
constants is well-typed under. If the value is a location, the
consistency relation requires that the stateotorresponding re-
source satisfies its resource type invariant. This requirement is sat-
isfied, as all primitive declarations are checked that they preserve
the resource invariance (ruledim]).



(b) By induction on each well-typed expressierand on each
evaluation rule applicable far. At each step of the induction, we
assume that the desired property holds for each inductive deriva-

tion step, and proceed by case analysis on the next derivation step.

Our induction is carried out on the expected forms of well-typed
expressions, as follows.

Case [VAR]: Here,v is of base type (variables of resource types cannot
appear in this position during evaluation), let us denote Fby) =
b(n). We choosd, ¥’ and A’ to be respectively[’, 3 and A.
I",3, A’ = (I, w) is trivially maintained. We can also conclude
that if v reduces tds thenII(v) = k. From the consistency relation,
it follows thatI'’; /; A’ F & :: b(n), A’.
Case [M1]: From static semantics, we have:
;5 AF fvr,..,vp) 6, A ox p(¢), andA =>x p(pre(f)). The
second assumption of the theorem is thak, A = (I1, w). There
are two ways in which a call can be reduced, depending on whether
it is user-defined or primitive.
Subcase(D-Call): We choos&” =T + {z; : t;}7_;, %' = S and
A’ = A. From pmi] type rule, we havd™(v;) = t;, and con-
sequently consistency relation continues to hold:
D4 {z; =t} 55 A = I+ {z; — Ovs]}_,), . From
[RET] and [METH], we can also conclude that; ¥/; A’ +
ret([z1,..,zp|, true, pe) :: t, A ox p(P).
Subcase(D-PrimCall): Choos&@” =T, X' = £ andA’ = Aox p(¢).
Due to the consistency @fimOpwith ¢, it follows that
IV, %', A’ = (I1,w’). Furthermore, we can also conclude that
;25 A' =6 t,Aox p().
Case [LET]: There are two rulegD-Let-1) and(D-Let-2) by whiche —
e’ can be derived. We consider each case separately.

Subcase(D-Let-1): From static semantics, we hav&:X; A - eq :: t1, A1,
By induction hypothesis, there exisf$, >’ and A’ such that
I35 AN el ity Ayandl; X5 A = (I, w’). Thelat-
ter relation shows that consistency relation holds also for the
environment of expressiari. From the LET] rule applied on
e, we havel” + {v :: t}; X/; A} ez :: t2, Ao, By applying
[LET] rule one’, we obtain fore ande’ same type and contex-
tual constraint.

Subcase(D-Let-2): We choosé&” to bel™ + {z :: ¢}, X’ to beX andA’
tobedX - Ay A equatét, t1) A noX(t). From [LET] rule, we
havel' + {z :: t}; 3/; A’ I eg :: t2, Ao, such thath, implies
final(t). Applying [RET], we can conclude that the types of
ande’ coincide. The consistency relation is also maintained:
from [LET] rule, we havd”; >/; A’ + § :: t1, A”, and conse-
quently we can conclude this case:

D'+ {z:t}hS;Ax = (14 {z — &}, w), whereAy = IX-

A1 Aequatét, t1) A noY (t).

Additionally, if the value thates will reduce to is a location,
then the corresponding resource satisfies its finality constraint.
We obtained that the contextual constraixy satisfiesfinal(t)
from [LET] rule. From the induction hypothesis, we can as-
sume that, after applyingRlET] rule, the consistency relation
holds. Specifically the runtime environment obtained adter
reduces to a location satisfigs,. This runtime environment
will also satisfyfinal(t) when the resource will become inacces-
sible. As a consequence, for a well-typed program, the runtime
testcheckfinal is always satisfied and can be safely eliminated.

Case [IF]: Here,e must have the fornif v then e; else ez, for somev,
e1 andez. We also must havE(v) = Bool(b),
T;AANb=11F €1 = t1,A1 andT; AAND=0F e :: to,As.
There are two ruleeD-If-true) and(D-If-false) by whiche — ¢’ can
be derived.
Subcase(D-If-true): If e — e’ is derived usingD-If-true), we know that
II(v) must betrue and the resulting expressionds. Choose
I to bel’, A’ tobeA A (b= 1) andX’ to beX. Itis obvious
thatT’, >/, A’ |= (I1, =). We also have
IV; 35 A eq i t, p Arand(pr A1 = p1 A1V p2 Ag).
Subcase(D-If-false): Similar reasoning eéSubcaséD-If-true).
Case [RET]: There are two rulegD-Ret-1) andD-Ret-2) by whiche —
e’ can be derived. We consider each case separately.

Subcase(D-Ret-1): From static semantics, we haVeX; A ey :: ¢1,Aq.
By induction hypothesis, there exisf$, >’ and A’ such that
;35 A el b, Ayandl; 5 A = (IU, w’). The lat-
ter relation shows that consistency relation holds also for the
environment of expressioel. From the RET] rule, and the
similarity in typing fore; ande’, we conclude that same type
and contextual constraint are derived feande’.

Subcase(D-Ret-2): Let us choosE’ to beI" — {v1,..,v, }, ¥’ to beX
andA’ to beA. The consistency relation is trivially maintained,
since{v1, .., vp } are excluded from both the type environment
and dynamic stack. Also, fronr[ET] rule, we can conclude
thate ande’ have the same type.

Proof of progress: By induction on the derivation of : ¢; A;.

The cases indons1]-[ cons4] are immediate sinceis a value. For
the other cases, we argue as follows.

Case [vAR]: Rule (D-Var) can be applied to reduce a variable to a primi-
tive value.

Case [Mm1]: This can be reduced byp-Call) or (D-PrimCall), depending
on whethere represents a user-defined or a primitive method call. In
the former case, a one-step reduction is always possible byDthe
Call) rule.
However, for primitive method there is the possibility for the failure
of the associated runtime test, making the evaluation to get stuck.
We will assume that the precondition specified by the user and used
by the static semantice(e( f)) describes faithfully the runtime test
executed dynamically.

We can conclude from the static semantics thats> x p(pre(f)).

From this fact, together with the consistency relation

I; 3; A = (11, w), it follows that the runtime test cannot fail. Hence,
one-step reduction will proceed hip-PrimCall). This further indi-
cates that for a well-typed program the runtime tests are always sat-
isfied and therefore can be safely eliminated.

Case [LET]: This can be reduced by eithéd-Let-1) or (D-Let-2). In the
case that; is not a value, we rely on induction hypothesis to make a
reductione; — €. Otherwise, ife; is a value, we useD-Let-2) to
perform a one-step reduction.

Case [1F]: Fore to be well-typedp must be a boolean value, eitherue
or false. In the first case, (D-If-true) applies, otherwid2-If-false)
applies.

Case [RET]: This can be reduced by eithdD-Retl1) or(D-Ret2). In the
case that; is not a value, we rely on induction hypothesis to make a
reductione; — e/ . Otherwise, ife; is a value, rulgD-Ret2) can be
used to perform a one-step reduction.




