Threader: A Constraint-based Verifier
for Multi-Threaded Programs

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko

Technische Universitiat Miinchen

Abstract. We present a tool that implements Owicki-Gries and rely-
guarantee methods for the compositional verification of multi-threaded
programs. Our tool computes the requisite auxiliary assertions automat-
ically using an abstraction and refinement procedure. Our procedure is
based on a Horn clause encoding of refinement queries and facilitates the
discovery of thread-modular proofs when such proofs exist. We present
the tool and its evaluation on a collection of benchmarks, including a
direct comparison of the effectiveness of the proof rules.

1 Introduction

Software running on our computers is becoming increasingly concurrent, i.e.,
it consists of several execution threads that process several tasks in parallel
and interact with each other during the operation. Increasing concurrency is
supported by the state-of-the-art in computer hardware, where modern CPUs
have several computing cores and can execute several threads at the same time.
However, it is extremely difficult to develop correct concurrent programs that
are free of bugs, as evidenced by recent studies [5,10].

In this paper we present THREADER, a tool that automates verification of
multi-threaded programs. The algorithms implemented in THREADER are rooted
in compositional proof rules [9,13]. Following [6,7], THREADER uses abstraction
and abstraction refinement to find adequate auxiliary assertions for verification.
In this paper, we investigate the effectiveness of the compositional rules on a
collection of benchmarks.

2 Threader overview

THREADER consists of three main modules that interact as shown in Figure 1.
First, a C-frontend translates the input C program and its assert statements into
a transition system that is represented using constraints over program variables.
Next, the program safety is verified by iteratively applying abstract reachability
computation and abstraction refinement steps. If no error state is unreachable
then THREADER reports that the program is safe. Otherwise, i.e., if an error state
is discovered by the abstract reachability computation, THREADER encodes the
error state reachability using a set of recursion free Horn clauses and invokes a
Horn solver. If the Horn clauses are not satisfiable then THREADER returns a



new predicates

(

Abstract Abstraction
reachability clauses refinement

safe counterexample

C file and transition
————— | C-frontend
assertions system

Fig.1. The main modules of THREADER. The abstract reachability module solves
recursive equations (1), (2), or (3). The abstraction refinement module discovers (tran-
sition) predicates by solving Horn clauses.

counterexample. Otherwise, a solution of the Horn clauses yields predicate that
are needed to refine the abstraction. We describe the modules of THREADER
below.

C-frontend THREADER’s frontend is based on the CIL framework [12]. The
frontend takes as input a C file containing N functions that represent N threads
to be executed in parallel. We assume that the threads interact using shared
variables. THREADER does not support recursive functions and relies on inlining
to deal with function calls. After inlining, each of the N functions is translated to
a constraint-based representation. The frontend outputs a transition system P =
(V, Qinit, errs P1, - - -, PN) With variables V', initial states @, error states @y,
and thread transitions p1,...,pn. The program variables V = (Viz, Vi,..., W)
are partitioned into global variables shared by all threads, and local variables of
each thread. The set of initial program states @;,;; is obtained by initializing the
global variables. The set of error states e, is derived from the assert statements
in the input C program. Finally, each transition relation p; can only change the
values of global variables and local variables of thread i. We use p;- = (V; = V)
to make this requirement explicit, i.e., for each i # j € 1..N we require the
validity of p; — p; . We assume that each implication assertion in this paper
is implicitly universally quantified over its free variables. The transition relation
of the entire program is p; V---V pn .

Abstract reachability (and environment transitions) Given an abstrac-
tion function, the abstract reachability module computes an over-approximation
of the states reachable during any execution of a multi-threaded program and
corresponding environment transitions, as described by the proof rules in Fig-
ure 2.

The rule (1) relies on a single, global auxiliary assertion R over program
variables V. If R satisfies all three conditions of the proof rule then the program
is safe. The first condition ensures that R over-approximates the initial states of
the program ;,;;. The second condition ensures that R is invariant under the



Find an assertion R over V such that:

a(pinit) — R (1)
&(post(pr V---Vpn,R)) = R
RA @err — false
Find assertions Ri,..., Ry over V such that
(o7 (%mz) — R; fort e 1..N (2)
&;i(post(ps, Ri)) — R; fori e 1..N
&i(post(pj, Ri A Rj)) = Ry fori#j€1.N

RiN---ANRNA @err — false

Find assertions Ri,..., Ry over V and Ei,..., Ey over V and V' such that

& (Pinit) — R; for i € 1..N (3)
ai(post(pi V (Ei A py), Ri)) — Ri for i € 1..N

ajvi (R A py) — E; fori#j€1.N
RiN---ANRNA Qerr — false

Fig. 2. Proof rules for safety of a program (V, @init, @err, p1,- - -, pn) - Given abstraction
functions, THREADER computes the strongest solution for the auxiliary assertions using
either (1) “Monolithic”, (2) “Owicki-Gries”, or (3) “Rely-Guarantee” proof rule.

application of the thread transitions p1, ..., pn. The last condition requires that
R does not intersect the error states @ep, -

The rule (2) is a formulation of the “Owicki-Gries” proof rule [13]. The rea-
soning about reachable states is localized by replacing a global auxiliary assertion
R with N thread-reachability assertions Ry, ..., Ry . Each thread-reachability as-
sertion R; needs to over-approximate the initial states and needs to be invariant
under the transition relation of thread ¢ . In addition, R; also needs to account
for interference from the transition relation of thread j when it is applied to
reachable states in 2; . The last condition requires that the intersection of the
thread-reachability assertions and .., is empty.

The rule (3) reasons about the threads individually by relying on environ-
ment assertions. Each assertion F; denotes a binary relation over V' and V’ that
captures how all threads other than ¢ can change the program states. As above,
the thread-reachability assertion R; is required to over-approximate the initial
states and be invariant under the transition relation of thread ¢ . THREADER
accounts for the interference from threads other than ¢ by the environment tran-
sition E; A p;-, which does not modify the values of variables local to thread ¢ .

THREADER effectively computes the strongest candidate for the auxiliary
assertions wrt. a given abstraction. See [7] for a corresponding algorithm for the
proof rule (3) (other rules are similar).



In practice, it is crucial to maintain for each thread ¢ an abstraction function
&; that approximates the thread-reachability R; . Environment transitions are
approximated using different abstraction functions for different pairs of threads.
For an abstraction function é;,; the double dot indicates that the function é;
abstracts binary relations over states (not sets of states) and the index i > j
indicates that this function is used to abstract the effect of the thread ¢ on the
reachability of thread j .

THREADER uses predicate and transition predicate abstraction functions that
are defined using sets of predicates P; and transition predicates ,ﬁipj as follows.

a;(S) = /\{15 €P;| S —p} i (T) = /\{ﬁ € Piwj | T — p}

THREADER discovers the sets of (transition) predicates automatically. Initially,
the empty sets are used to compute a coarse approximation of the reachable
state space and environment transitions. If, for given abstraction functions, the
reachability assertions intersect the set of error states, then the discovered er-
ror evidence needs to be checked for spuriousness. The reachability assertions
computed so far are used to formulate a query to the abstraction refinement
module.

Termination properties THREADER can prove termination properties based
on a “Rely-Guarantee” proof rule and automated construction of transition ab-
straction functions. More details are reported in [8].

3 Experiments

In this section, we present our experience with applying THREADER on
15 multi-threaded C programs. See Table 1. The name of the benchmark
and the number of lines of C code are shown in the first two columns.
Columns 3, 4 and 5 present verification results obtained from our imple-
mentation of the proof rules (1), (2), and (3), respectively. The source
code for the examples together with additional data can be found at
http://www.model.in.tum.de/ popeea/research /threader.html.

The programs shown in Table 1 are small but intricate. We are not aware of
any automatic tool that can deal with these examples.

The first example from the table illustrates a program used as running exam-
ple in the paper introducing thread-modular model checking [4]. The program
safety can be proven using each of the proof rules. Due to the low complexity
of this safety proof, this program illustrates that monolithic verification may
conclude faster than localized reasoning.

The second part of the table reports on various algorithms to establish mutual
exclusion between a number of threads. For all these examples, we instrumented
a safety assertion to check mutual exclusion. Dekker, Peterson, and Szyman-
ski are classical algorithms. Readers-writer-lock and Time-varying-mutex are
tests for the Calvin model checker [3]. QRCU [11] is a variant of the read-copy-
update algorithm that is used in the Linux kernel, and is the most complex of



Benchmark programs | LOC | “Monolithic” | “Owicki-Gries” | “Rely-Guarantee”
Spin2003 18 0.02s 0.02s 0.1s
Dekker 39 T/O 0.3s 1.1s
Peterson 26 T/O 0.7s 2.3s
Szymanski 43 T/O 1.8s 12.2s
Readers-writer-lock 22 0.03s 0.03s 0.1s
Time-varying mutex 29 0.3s 0.73s 7.5
NaiveBakery 22 T/O 0.3s 2.4s
Bakery 37 T/O 1.4s 97s
Lamport 62 T/O 11.4s 57s
QRCU-2processes 120 T/O 1.8s 11.3s
QRCU-3processes 148 T/O 89s T/0O
QRCU-4processes 182 T/O T/O T/O
Mozilla-fixed-vulnerab| 168 T/O 0.8s 0.8s
See-Saw 98 T/O T/O 7.8s
Scull 451 T/O T/O 41.2s

Table 1. Applying different proof rules implemented in THREADER. All programs are
safe. Time is measured in seconds. “T/O” stands for time out after 15 minutes.

the presented mutual exclusion algorithms. We test its simple variant with two
processes (one reader and one updater), as well as variants with two and three
readers. For all benchmarks, we observed that the monolithic verification can-
not cope with the transition relation of the entire program. Furthermore, the
“Owicki-Gries” proof rule captures concisely the interference between threads,
as the state space is overly constrained by values of the variables establishing
the mutual exclusion invariant. Finally, the “Rely-Guarantee” proof rule requires
representing intricate environment transitions and therefore it needs to discover
supporting transition predicates. We include the example QRCU-4processes that
times-out for both “Owicki-Gries” and “Rely-Guarantee” abstraction refinement
methods. We note that for the moment THREADER does not implement algo-
rithms for symmetry reduction that would be beneficial for the efficiency of a
compositional verification approach, as demonstrated in [1].

In the third part of the table, Mozilla-fixed-vulnerab is a fix from the Mozilla
CVS repository for a vulnerability described in a study of concurrency bugs [10].
See-Saw is a multi-threaded version of the program reported in [14] where we
instrumented the invariants obtained by the StInG prover as assertions in the C
program. Scull [2] is a Linux character driver that implements access to a global
memory area. Different invocations of the open, read, write, and release functions
implemented by the device driver access common variables and these accesses
should be performed in a critical section. For these programs, we observed that
“Rely-Guarantee” reasoning allows a natural encoding of environment transi-
tions as binary relations. In contrast, the “Owicki-Gries” proof rule is not able
to capture the thread interference since the thread-reachability assertions are in
this case expressed over sets of states.



To conclude, we note some of the significant advantages of the algorithms

implemented in THREADER.

They are applicable to arbitrary (or ad-hoc) synchronization patterns, not
only nested locking patterns or datarace free code.

THREADER does not restrict the analysis to a bounded number of context-
switches, but instead analyzes (implicitly) an unbounded number of context
switches.

The proofs constructed by THREADER are not restricted to thread-modular
proofs. In addition, the search for new (transition) predicates can be re-
stricted to thread-modular solutions that favor compositional reasoning, as
described in [7].

THREADER allows an experimental comparison of the two state-of-the-art
proof rules for compositional verification of multi-threaded programs in a
uniform setting.

References

1.

2.

3.

10.

11.

12.

13.

14.

A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. FMSD,
34(2):104-125, 2009.

J. Corbet, A. Rubini, and G. Kroah-Hartman. Linuz Device Drivers, 3rd Edition.
O’Reilly Media, Inc., 2005.

C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In ESOP, pages 262-277, 2002.

C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, pages
213-224, 2003.

P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A study of the internal and
external effects of concurrency bugs. In DSN, pages 221-230, 2010.

A. Gupta, C. Popeea, and A. Rybalchenko. Non-monotonic refinement of control
abstraction for concurrent programs. In ATVA, pages 188-202, 2010.

A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement
for verifying multi-threaded programs. In POPL, pages 331-344, 2011.

A. Gupta, C. Popeea, and A. Rybalchenko. Transition invariants and environ-
ment transitions for proving termination of multi-threaded programs. 2011. Under
submission.

C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596-619, 1983.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. In ASPLOS, pages 329-339,
2008.

P. McKenney. Using Promela and Spin to verify parallel algorithms. LWN.net
weekly edition, 2007.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In CC, pages 213-228,
2002.

S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319-340, 1976.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In SAS, pages 53—68, 2004.



