Threader: A Verifier for Multi-threaded
Programs

(Competition Contribution)

Corneliu Popeea and Andrey Rybalchenko

Technische Universitat Miinchen

Abstract. THREADER is a tool that automates verification of safety and
termination properties for multi-threaded C programs. The distinguish-
ing feature of THREADER is its use of reasoning that is compositional
with regards to the thread structure of the verified program. This paper
describes the verification approach taken by THREADER and provides
instructions on how to install and use the tool.

1 Verification Approach

THREADER is a tool for verification of C programs based on predicate abstrac-
tion and refinement following the counterexample-guided abstraction refinement
(CEGAR) paradigm [3]. There is a number of verification tools based on abstrac-
tion refinement that are successful for sequential programs [1,2,4,5,7,12]. This
paper gives a brief description of specific features that were required to han-
dle the concurrency benchmarks from the verification competition. Interested
readers can find more details about the theory behind THREADER in [6].

2 Software Architecture

THREADER consists of two main components: a frontend for translating C pro-
grams in corresponding transition systems and a model checking back-end.
The frontend is implemented in the OCaml language and relies on the CIL
library [10]. Additional analyses are implemented in our frontend to handle the
competition benchmarks (see next section for details). The model checker au-
tomates compositional reasoning of multi-threaded programs by implementing
Owicki-Gries and rely-guarantee proof rules [9,11]. This model checker is im-
plemented in the Prolog language and relies on the constraint solver for linear
arithmetic CLP(Q) [8].

3 Discussion

In this section we present our experience in running THREADER on the bench-
marks from the Concurrency category.



THREADER supports C programs with calls to Pthread library functions. To
handle threads and mutex objects from the Pthread library, we require a pointer
analysis that is more precise than the standard flow insensitive analysis available
from the CIL library. As a solution to this problem, we implemented a context-
sensitive pointer analysis that is explicit about some heap allocated objects and
sound for multi-threaded programs.

Creation of threads in loops is another difficulty for THREADER, since our
model checker assumes a finite number of threads during verification. To handle
this problem, we implemented a frontend analysis to compute the number of
loop iterations and consequently the number of threads to be created. For all
the competition benchmarks, this analysis is precise and we obtain constant
values for the number of threads. As future work we would like to handle cases
where the number of threads cannot be precisely computed statically, i.e., to be
able to do automatic verification of parameterized systems.

Another difficulty for automatic verifiers is the analysis of array objects.
Here THREADER takes a pragmatic approach automating verification for some
particular universal properties over the elements of an array. This reasoning is
sufficient to handle three benchmarks (indexer_safe.i, stack unsafe.i and
stack_safe.i). Precise results for the four queue benchmarks require invariants
that relate contents of different array objects and cannot be currently handled
by THREADER.

The set of Concurrency benchmarks contains some benchmarks that are pre-
processed using the Simplify CIL module (the *.cil.c benchmarks). These
benchmarks are presented as three-address-code with a significant number of
temporary variables, with ’for’ statements transformed into loops with ’goto’
statements indicating the loop exit, and with array operations expressed using
pointer arithmetic. THREADER benefits from the CIL framework that allows an
easy recovery of the high-level information regarding loops and array operations.
Therefore we observed (almost) identical verification results and times for both
the *.cil.c and the *.1i forms of the benchmarks.

In general our verifier is designed not to miss bugs present in the C programs.
We list here some of the significant advantages of THREADER that facilitate a
sound analysis of multi-threaded programs.

— THREADER is applicable to arbitrary (or ad-hoc) synchronization patterns,
not only nested locking patterns or datarace free code.

— THREADER does not restrict the analysis to a bounded number of context-
switches, but instead deals with an unbounded number of context switches.

— THREADER is not restricted to programs with thread-modular proofs and can
handle the general case of non-thread-modular proofs required for example
by the Fibonacci competition benchmarks.

To summarize, we ran THREADER on the 32 benchmarks from the Con-
currency category and obtained a total of 43 out of the 49 points available in
this category. THREADER reports SAFE and UNSAFE correctly for 28 bench-
marks. For the other four benchmarks (queue unsafe.cil.c, queue_unsafe.1i,
queue_ ok _safe.cil.c, queue ok safe.i), THREADER returns UNKNOWN



due to limitations in handling quantified array invariants. (We are not aware
of any automatic verification tool that can handle these benchmarks.) A SAFE
result leads to the creation of an abstract reachability tree that represents a
correctness proof (see generated file art.dot). An UNSAFE result leads to the
creation of a counterexample in dotty format (see generated file cex.dot).

4 Tool Setup

THREADER can be downloaded from http://www7.in.tum.de/tools/threader/.

THREADER is provided as a set of statically compiled binaries for the
Linux x86-64 architecture. A script is provided to invoke THREADER with
predefined options for the competition. The tool should be run as follows:
./threader.sh <file.c>. The working directory (PWD) must be the directory
where THREADER's files are located.

Acknowledgements We gratefully acknowledge the help of Ashutosh Gupta
on designing and implementing various aspects of the previous version of
THREADER. This research was supported in part by ERC project 308125
VeriSynth.

References

1. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL, 2002.

2. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, 2011.

3. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, 2000.

4. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based
predicate abstraction for ANSI-C. In TACAS, pages 570-574, 2005.

5. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A software verifier based on Horn clauses - (competition contribution).
In TACAS, pages 549-551, 2012.

6. A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement
for verifying multi-threaded programs. In POPL, pages 331-344, 2011.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, pages 58-70, 2002.

8. C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.8.3. Austrian Research Institute
for Artificial Intelligence, Vienna, 1995. TR-95-09.

9. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596-619, 1983.

10. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In CC, pages 213-228,
2002.

11. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319-340, 1976.

12. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model
checking with abstraction refinement. In PADL, pages 245-259, 2007.



