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Abstract: With the growing popularity of machine learning, the quest for verifying data-
driven models is attracting more and more attention, and researchers in automated 
verification are struggling to meet the scalability and expressivity demands imposed by 
the size and the complexity of state-of-the-art machine learning architectures. However, 
there are applications where relatively small-scale learning models are enough to 
achieve industry-standard performances, yet the issue of checking whether those models 
are reliable remains challenging. Furthermore, in these domains, verification is just half 
of the game: providing automated ways to repair models that are found to be faulty is 
also an important task in practice. In this talk, I will touch upon some research directions 
that I have pursued in the past decade, commenting the results and providing some 
connections with related efforts.  
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Learning Certificates
for Properties of Continuous Dynamical Systems

Abstract

Stefan Ratschan

Institute of Computer Science of the Czech Academy of Sciences

Inductive invariants and ranking functions play an important role in the veri-
fication of discrete systems, certifying, for example, reachability and termination
properties of loops in computer programs. For continuous dynamical systems,
similar certificates have been in use since the defense of Aleksandr Lyapunov’s
thesis in 1893. However, for most of the time since then, it has been a question of
engineering ingenuity to come up with such certificates. This has changed in re-
cent years, due to progress in the automatic computation of Lyapunov functions
and barrier certificates in the continuous case, and of inductive invariants and
ranking functions in the discrete case. It has also become clear that learning (i.e.,
generalization from special cases) can play an important role in computing such
certificates. However, the respective development in the continuous and the dis-
crete case has been largely independent, communication being largely restricted
to the area of hybrid dynamical systems.

In the talk we will contribute to this communication1,

– giving an short overview on the role of certificates for verifying properties
of continuous dynamical systems [9, 5, 3], and on algorithms for computing
them [6, 7, 10, 12],

– discussing the role of learning in such algorithms [11, 2, 1] and its advantages
and downsides that we observed in our work [8], and

– presenting our ongoing work [4] on learning certificates in verification and
control synthesis for continuous dynamical systems.

We will conclude the talk with a discussion of open questions in the area, relating
the continuous case to the discrete one.

References

1. A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo. Fossil: A soft-
ware tool for the formal synthesis of lyapunov functions and barrier certificates
using neural networks. In Proceedings of the 24th International Conference on Hy-
brid Systems: Computation and Control, HSCC ’21, New York, NY, USA, 2021.
Association for Computing Machinery.

2. A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo. Formal synthesis of Lyapunov
neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

1 The references included in this abstract should be seen just as illustrative examples,
certainly being far from exhaustive.



3. C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural
lyapunov-barrier functions. In Conference on Robot Learning, pages 1724–1735.
PMLR, 2022.

4. J. Fejlek and S. Ratschan. Computation of stabilizing and relatively optimal feed-
back control laws based on demonstrations. arXiv preprint arXiv:2011.12639. sub-
mitted.

5. H. Han, M. Maghenem, and R. G. Sanfelice. Certifying the LTL formula p until q
in hybrid systems. arXiv preprint arXiv:2106.06455, 2021.

6. P. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic opti-
mization in control. European Journal of Control, 9(2–3), 2003.

7. S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In R. Alur and G. J. Pappas, editors, HSCC’04, number 2993 in LNCS.
Springer, 2004.

8. S. Ratschan. Simulation based computation of certificates for safety of dynamical
systems. In A. Abate and G. Geeraerts, editors, Formal Modeling and Analysis of
Timed Systems: 15th International Conference, FORMATS 2017, volume 10419,
pages 303–317. Springer International Publishing, 2017.

9. S. Ratschan. Converse theorems for safety and barrier certificates. IEEE Trans.
on Automatic Control, 63(8):2628–2632, 2018.

10. S. Ratschan and Z. She. Providing a basin of attraction to a target region of
polynomial systems by computation of Lyapunov-like functions. SIAM Journal on
Control and Optimization, 48(7):4377–4394, 2010.

11. H. Ravanbakhsh and S. Sankaranarayanan. Learning control Lyapunov functions
from counterexamples and demonstrations. Autonomous Robots, pages 1–33, 2018.

12. M. A. B. Sassi, S. Sankaranarayanan, X. Chen, and E. Ábrahám. Linear relaxations
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Type Inference as Optimization⋆
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Optionally typed dynamic languages can permit multiple valid type assign-
ments. When this happens, developers can prefer one valid type assignment
over another because it better reflects how they think about the program and
the problem it solves. Natural type inference (NTI) uses natural language text
within source code, such as identifiers, to help choose valid programming lan-
guage types. A growing body of techniques has been proposed for NTI. These
techniques predict types; they seek to return natural type assignments (assign-
ments that reflect developer preferences) while striving for correctness. They
are empirically effective, but they are not sound by construction: they do not
leverage programming language theory to formalize their algorithms and show
correctness and termination. Filling this foundational gap is the purpose of this
paper. We are the first to present a detailed algorithm for NTI that is validated
with theorems and proofs. Valid type assignments obey logical constraints aris-
ing from type rules; natural type assignments obey natural constraints arising
from the natural language text associated with a variable and its uses. The core
intuition of this work is that logical and natural constraints can interact to speed
finding a type valuation that 1. type checks (satisfies the logical constraints) and
2. is most natural. We formulate NTI as a joint optimization problem. To do
this, we define a numerical relaxation over boolean logical constraints that give
us a condition that we treat as a hard constraint, while simultaneously we min-
imize distance from natural constraints, which we treat as soft constraints for
our optimization problem. Our main result, the first formal proof of soundness
for natural type inference, is that our algorithm always terminates, either with
an error or with a tuple that is guaranteed to be a type signature for its input.

Contributions: Formal Foundations for Natural Type Inference As the setting
for our study, we define an exemplary type inference task as finding a type
signature for an untyped function definition within a λ-calculus, whose types are
defined by a global set of equations between type names and scalar, record, and
function types. The operational semantics and type system satisfy preservation
and progress properties.

Our contributions are as follows:

– We present a new algorithmic type system that given an expression yields
logical and natural constraints. The algorithm is terminating and the logical

⋆ This work was supported by Microsoft Research through its PhD Scholarship Pro-
gramme.



2 E. V. Pandi et al.

constraints are sound and complete with respect to the declarative type
system. Our overall task is finding a type signature for an untyped function
definition, is equivalent to satisfying the logical constraint extracted from
the function definition.

– We show how to combine a numerical relaxation of the logical constraints
with probability distributions over the library of types to form a joint opti-
mization problem. Firstly, we show how to relate the logical semantics and
its relaxations. And then we present our key theorem where we shod that
the optimizer is guaranteed to terminate with the optimal solution to the
natural constraints that satisfies the logical constraints.

– We describe an overall algorithm for natural type inference, building on the
algorithmic type system and the constraint satisfaction algorithm. By the
correctness theorem, the algorithm always terminates, either with an error,
or with a tuple that is guaranteed to be a type signature for its input.

This work is the first to formalize and prove termination and soundness for a
natural type inference algorithm. Our specific algorithm deals with ambiguities
arising from overloading, dot-notation, and structural equality of type names.
It provides formal foundations for OptTyper [1] and shows that the resulting
type signatures are sound. Some of our definitions, including logical and natural
constraints, the continuous relaxations, and the core optimization problem are
based on [1], but all the theorems of this paper are new, as is the formulation of
an algorithm for type-checking function definitions in a typed λ-calculus.

As our literature review makes clear, all work in learning-based type infer-
ence to date focuses on formalising their method, none states theorems or for-
mally proves its approach to be sound by construction, and all are empirically
validated. The present work rises to address this challenge. We have formally
developed an inference system, from the ground up, that assigns type names to
arbitrary type structures. This type system captures key aspects of type infer-
ence in optionally typed languages used in industry, like TypeScript and Python.
Crucially, we have validated this system by theorem and proof. This work is the
first to formalize and prove termination and soundness for a natural type infer-
ence algorithm.

Still, there are limitations that can be addressed in future work. Our algo-
rithm only chooses types from the given library of type definitions. Hence, an
input expression will be rejected if it needs a record or function type missing
from the library. Another limitation is that we ignore field names when gen-
erating natural constraints. We expect it would be straightforward to extend
the inference algorithm to augment the given library with type equations defin-
ing additional record or function types, as needed, and to take field names into
account.

A bigger challenge is to extend natural type inference to features including
subtyping, parametric polymorphism, and intersection and union types, impor-
tant for TypeScript and other languages.
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Despite the numerous achievements of reinforcement learning [RL; 19, 14],
safety still prevents the wide adoption of RL [4]. The lack of knowledge about
the environment forces standard agents to rely on trial and error strategies.
However, this approach is incompatible with safety-critical scenarios [5]. For
instance, while operating a power network, an agent trying random actions could
cause a blackout, which is strictly unacceptable [12, 18].

Developments in safe RL have allowed learning policies that respect safety
constraints expressed by a constrained Markov decision process [CMDP; 3]. For
instance, SAC-Lagrangian [6] combines the Soft Actor-Critic [SAC; 7, 8] algo-
rithm with Lagrangian methods to learn a safe policy in an off-policy way. This
method solves high-dimensional problems achieving a sample complexity lower
than its on-policy counterparts. Unfortunately, it only finds a safe policy at the
end of the training process and may be unsafe while learning.

Some knowledge about the safety dynamics can ensure safety during learning.
One can precompute unsafe behavior and mask unsafe actions using a so-called
shield [2, 10], or start from an initially safe baseline policy and gradually improve
its performance while remaining safe [1, 21, 23]. However, this approach may
require many interactions with the environment before it finds a reasonable
policy [24]. Moreover, reusing a pre-trained policy can be harmful since the
agent faces a new trajectory distribution as the policy changes [9]. Therefore, we
focus on how to efficiently solve a task without violating the safety constraints.

Drawing inspiration from transfer learning [20],we propose to transfer a pol-
icy, the safe guide (SaGui, see title figure), from the source task (♢) to the target

⋆ This research is partially funded by the Netherlands Organisation for Scientific Re-
search (NWO), as part of the grant NWA.1160.18.238: “PrimaVera”.

⋆⋆ Equal contribution.
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Fig. 1. Empirical analysis on the Safety-Gym Engine [15] showing the safety-related
cost-return (middle) and task-related return (right) of the policy interacting with the
target task.

task (⊙). This approach has three major steps: i) training the SaGui policy and
transferring it to the target task; ii) distilling the guide’s policy into a student
policy, and iii) composing a behavior policy that balances safe exploration (using
the guide) and exploitation (using the student).

To train the SaGui policy, we consider the reward-free constrained RL frame-
work [13], where the agent only observes the cost function, and it does not have
access to the reward function. This task-agnostic approach allows us to train a
guide even when we do not know the reward of the target task, and this guide
can be useful for different reward functions. Inspired by advances in robotics
where an agent is trained under strict supervision, we assume the source task
is a simulated/controlled environment [16, 22]. Therefore, safety is not required
while training the SaGui policy. Nevertheless, we consider this environment pro-
vides enough safety information, such that any policy that is safe on the source
task is also safe when deployed on the target task [11, 17]. Once the target’s
reward is revealed, the SaGui policy safely collects the initial trajectories, and
we start training the student’s policy. To ensure the new policy quickly learns
how to act safely, we also employ a policy distillation method, encouraging the
student to imitate the SaGui policy.

Inspired by [20] we consider two safety-transfer metrics to evaluate this ap-
proach: safety jump-start, the initial reduction in the expected cost-return of
an agent trained using the source knowledge compared to the expected cost-
return of an agent learning from scratch; and safety speed-up, the difference in
the amount of interactions required to reach the safety threshold.

The empirical analysis (Fig. 1) shows that this method provides a large safety
jump-start, almost completely preventing the violation of the safety constraints
on the target task. It also shows the exploration benefits of SaGui, which allows
the agent to solve the target task faster than agents learning with a naive guide.

Some directions for future work include: improving the exploration capabil-
ities of the guide using techniques from reward-free RL; investigating how to
compose policies with multiple guides; and evaluating the distillation approach
from a curriculum learning perspective in an online setting.
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Reinforcement learning (RL) [30] is a machine learning technique for decision-
making in dynamical environments. An RL agent explores its environment by
taking actions and perceiving feedback signals, usually rewards and observations
on the current system state. With success stories such as DeepMind’s AlphaGo [27]
and AlphaZero [28], RL nowadays reaches into areas such as robotics [15, 1],
autonomous driving [26], or healthcare [34]. One of the major limitations for
RL agents operating in safety-critical environments is the high cost of failure.
Without side-information, an RL agent explores the effects of actions – often
selected randomly such as those in state-of-the-art policy-gradient methods [22] –
and will thus inevitably select unsafe actions that potentially cause harm to the
agent or its environment. Consequently, applications for RL are often restricted to
games [19] or assume access to digital twins: high-fidelity simulations of realistic
scenarios [31]. This problem of unsafe exploration has triggered research on the
safety of RL [8]. “Safe RL” may refer to (1) changing (“engineering”) the reward
function [17] to encourage the agent to choose safe actions, (2) adding a second
(“constraining”) learning objective by means of a separate cost function [20], or
(3) blocking (“shielding”) unsafe actions at runtime [2].

The typical model to accommodate both uncertainties in actions (due to limi-
tations of actuators) and uncertainties in observations (due to limited sensing) are
partially observable Markov decision processes (POMDPs) [14]. We capture safety
by reach-avoid specifications, a special case of temporal logic constraints [24].

To provide safety guarantees, we advocate using explicit side-information based
on a partial model of the environment. In particular, we need to know the graph
of a POMDP, while probabilities and rewards may remain unspecified [25]. Under
the (necessary) assumption that such a partial model is available, we extract a
shield that ensures verifiably safe, or correct, behavior of an RL agent with respect
to the model and formal specifications such as temporal logic constraints [24].
Despite tremendous progress [23, 32, 29], model-based reasoning, and in particular
verification, has limitations: Even if a POMDP is completely known, scalability
remains a challenge. Already, whether for a POMDP there exists a policy that
satisfies a temporal logic specification is undecidable [18]. Computing policies
for qualitative reach-avoid specifications is EXPTIME-complete [5], but efficient
methods based on satisfiability solvers show good empirical scalability [4, 21, 13].

We contribute the first and effective integration of shields computed via satisfi-
ability solving [13] with various state-of-the-art RL algorithms from Tensorflow [9]
and provide an extensive experimental evaluation. We show the following natural
effects that arise from such a combination.
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– Safety during learning: Exploration is only safe regarding reach-avoid specifi-
cations when the RL agent is provided with a shield. Even if the agent has
access to the inherent state estimation of a shield, unsafe actions are chosen
throughout all RL algorithms.

– Safety after learning: A trained agent that has been provided with an incentive
to adhere to safety still behaves unsafe sometimes. Moreover, typical unwanted
tradeoffs in settings with safety and (additional) performance objectives are
avoided when (1) safety is (strictly) enforced via shields and (2) the agent
focuses on performance.

– RL convergence: A shield not only ensures safety, but also significantly reduces
the search space and the required amount of data for RL.

Fig. 1 shows the outline of our approach. We demonstrate effects and insights on
shielded RL for POMDPs using several typical examples and provide detailed
information on RL performance as well as videos showing the exploration and
training process. To investigate to what extent more lightweight alternatives to a
shield help RL, we experiment with a state estimator. This estimator uses the
partial model to track in which states the model may be, based on the observed
history. We show that, while the RL agent may indeed benefit from this additional
information, the shield provides more safety and faster convergence than relying
on just the state estimator. Finally, after learning, we may gently phase out a
shield and still preserve the better performance of the shielded RL agent. Then,
even an overly protective shield may help to bootstrap an RL agent.

Further related work. Several approaches to safe RL in combination with formal
verification exist [10, 16, 2, 12, 7, 3]. These approaches either rely on shielding, or
guide the RL agent to satisfy temporal logic constraints. However, none of these
approaches take our key problem of partial observability into account. Recent
approaches to find safe policies for POMDPs with partial model knowledge do not
consider reinforcement learning [6]. Recent deep reinforcement learning approaches
for POMDPs, including those that employ recurrent neural networks [11, 33],
generate high quality policies with sufficient data but do not guarantee safety.
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Publication This is an extended abstract of [5].
Self-stabilizing protocols for distributed systems, and exponential back-off

mechanisms in wireless networks, are two of the many examples where Markov
chains (MCs) are used to model the probabilistic behaviour in closed-loop systems
(Fig. 1(a)). Such systems are typically subject to temporal specifications, e.g., a
self-stabilizing protocol should reach a stable configuration in few expected steps.
Checking the models against these specifications can be efficiently done using
state-of-the-art probabilistic model checking [6, 9].

Controller Environment

observation

fixed probability for action

system = Markov chain

(a) Verification of closed-loop
systems. Memory of the con-
troller is part of the system.

Controller Environment

observation

which action?
which

update?

system = e.g. POMDP

(b) Synthesis of controllers.
Memory not fixed and thus not
part of the system.

Controller Environment

observation

which probability for action?

system = pMC

(c) Parameter synthesis for
controllers. Memory fixed and
part of the system.

Fig. 1. Verification and (syntax-guided) synthesis for controllers

One step beyond verification is the correct-by-construction synthesis of con-
trollers for such systems via Partially Observable Markov Decision Processes
(POMDPs) (Fig. 1(b)). In general, the synthesis for partial-information controllers
is undecidable. In this work, we restrict the problem to controllers with a fixed
memory structure (influencing the number of indistinguishable states) and a
fixed set of potential actions that we want to randomize over.

This setting is useful, as in many systems one randomizes on purpose, e.g.,
in distributed protocols to break symmetry. Note that, the randomization is
controllable, but selecting a (near-)optimal way to randomize is non-trivial.

The synthesis task reduces to appropriately randomizing in a system with
a fixed topology (Fig. 1(c)). In this context, a controller selects a fixed set of
actions (of the POMDP) α1, . . . , αn with probabilities p1, . . . , pn. The aim is to
synthesize a realizable controller, i.e., for indistinguishable states, the controller

? Supported by DFG RTG 2236 “UnRAVeL” and ERC AdG 787914 FRAPPANT.

http://orcid.org/0000-0002-4774-7609
http://orcid.org/0000-0002-9113-2791
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0001-9819-8374
http://orcid.org/0000-0002-6143-1926


2 L. Heck, J. Spel, S. Junges, J. Moerman, J.-P. Katoen

must take action αi with the same probability pi. Synthesizing such controllers
can be formally described [7] as feasibility synthesis in parametric Markov chains
(pMCs), i.e., MCs with symbolic probabilities p1, . . . , pn [3,10]. The goal is to find
values u1, . . . , un for the parameters such that the MC satisfies a given property.

The challenge in applying parameter synthesis is twofold: the problem is
ETR-complete [8], yet the number of parameters grows linear in the number
of different observations and the number of actions available to the controller.
For many real-life applications we must thus deal with thousands of parameters.
This scale is out of reach for exact or complete methods [4]. However, heuristic
methods have shown some promise [1, 2].

In this presentation, we show a principled way to evaluate gradients in
parametric MCs. We characterize gradients as solutions of a linear equation
system over the field over rational functions and alternatively as expected rewards
of an automaton that is easily derived from the pMC at hand. Using the efficient
computation of gradients, we evaluate both classical and adaptive gradient
descent methods. Furthermore, we consider the classical gradient descent methods
where we only respect the sign of the gradient. Finally, we investigate various
methods to deal with restrictions on the parameter space (e.g. parameters should
represent probabilities). Using an empirical evaluation, we determine which region
restriction and gradient descent method performs best. We show that the resulting
method often outperforms state-of-the-art methods QCQP [2] and PSO [1].
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Markov decision processes (MDPs) are the standard model to reason about
decision-making problems under probabilistic uncertainty. Safety-critical scenarios
require assessments of correctness which can, for instance, be described by
expected reward or temporal logic [6] specifications. A fundamental requirement
for providing such correctness guarantees on MDPs is that probabilities are
precisely given. Methods such as variants of model-based reinforcement learning [4]
or PAC-learning [7] can learn MDPs by deriving point estimates of probabilities
from data to satisfy this requirement. This derivation naturally carries the risk of
statistical errors. Optimal policies are highly sensitive to small perturbations in
transition probabilities, leading to sub-optimal outcomes such as a deterioration in
performance [3, 2]. Uncertain MDPs (uMDPs) extend MDPs to incorporate such
statistical errors by introducing an additional layer of uncertainty via uncertainty
sets on the transition function [5, 9, 2].

Our approach. We study the problem of learning uncertain MDPs from data.
Input

uMDP M
Specification φ
Sampling access to
true MDP M

Robust Policy Computation

Sample from M Update M

Anytime learning procedure
Output

Robust policy π
Learned uMDP M
Performance of π

✗
✓

Fig. 1: Outline of the Procedure.

Despite the power of uMDPs to cap-
ture broad notions of uncertainty, most
work concerns the computation of poli-
cies that are robust against uncer-
tainty. In contrast, learning such mod-
els is not well-studied yet. We propose
an iterative learning method, outlined
in Fig. 1, that is able to adapt to new data which may be inconsistent with
prior assumptions. Furthermore, we recognize the inherent problem of sample-
inefficiency and provide a combination of approaches to render the method more
sample efficient. In particular, we learn intervals of probabilities for individual
transitions, without assuming any specific structure for the uncertainty set. This
Bayesian anytime learning approach employs intervals with linearly updating
conjugate priors [8] and can iteratively improve upon a uMDP that approximates
the true MDP we wish to learn. The method not only decreases the size of each
interval, but also increases it again in case of a so-called prior-data conflict where
new data suggests the actual probability lies outside the current interval.

Key features. We summarize the key features of our learning method, and what
sets it apart from other methods.

– An anytime approach. The ability to iteratively update intervals that are
not necessarily subsets of each other allows us to design an anytime learning
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Fig. 2: Experimental results on the chain problem and a grid world.

approach. At any time, we may stop the learning and use verification tech-
niques to compute a robust policy for the uMDP the process has yielded
thus far. If this policy is not satisfactory, we continue learning towards a
new uMDP that more faithfully captures the true MDP by including more
data. Thereby, we ensure that the robust policy gets gradually closer to the
standard policy for the true MDP, in contrast to e.g. PAC statistical model
checking [1], which does not iteratively improve upon an intermediate model.

– Specification-driven. Our method features the possibility to learn transitions
that only matter for a given specification. In particular, for reachability or
expected reward (temporal logic) specifications, which require certain set of
target states to be reached, we only learn and update transitions along paths
towards these states.

– Beyond expected reward. Our method can work with any specification for
which robust policies on uMDPs can be computed. In particular, we can
work with general LTL specifications, which is intractable for reinforcement
learning approaches [10].

– Flexibility in the type of uncertainty sets. We learn individual intervals for
transition probabilities, instead of complete uncertainty sets. Only when
computing a robust policy for the specification are the intervals are restricted
to a specific type of uncertainty.

– Efficient exploration policies. In order to sample trajectories from the true
MDP M as efficiently as possible, we propose designated exploration policies
that exploit the fact that the intermediate models are uMDPs.

Key experimental results. From our experimental evaluation on several standard
benchmarks (see Fig. 2 for an excerpt), we note that our method is effective
at learning uMDPs that yield robust policies that are conservative, as seen by
the estimation error : applying the robust policy to the true MDP gives a better
performance than expected from the performance on the uMDP. In contrast, a
comparison with maximum a-posteriori (MAP) estimation (which learns point
estimates and derives a standard MDP) shows that MAP-estimation may be
misleading by showing a better performance on the learned model than on the
true MDP. Furthermore, in some cases, we note that our method is the only one
able to converge to an optimal policy within a reasonable number of samples.
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Introduction

Model checking of probabilistic systems is a well-known important topic, see
e.g. [BK08, Chapter 10]. However, in real-world applications it often is difficult
to know the exact transition probabilities of the considered system. We propose
an approach that is able to reduce the case of a system with unknown transition
probabilities to a classical model checking problem with known probabilities.
Our algorithm provides a guarantee that the result is probably approximately
correct (PAC, [Val84]), i.e. that with high probability (more than 1 minus a
given tolerance δ), the resulting value is approximately correct (off by at most
a given tolerance ε). Moreover, the algorithm is independent of the considered
property.

Algorithm

The algorithm repeatedly applies two procedures:

– Infer confidence intervals from simulations.
– Infer best- and worst-case probabilities.

We will first discuss these two procedures and then comment on how to
combine them.

Inferring confidence intervals from simulations The aim of the first pro-
cedure (from [AKW19]) is to find confidence intervals for the unknown transition
probabilities. To this end, it simulates runs of the system and remembers how
often every transition occurred. Using the two-sides variant of the Hoeffding
bound [Hoe63], it can infer intervals for the transition probabilities that are cor-
rect with high probability (1 minus a given tolerance δ). For more details on
this step, see [AKW19, Sec. 3.2]. We highlight two interesting details in this
procedure which can potentially be improved by learning-based heuristics:

– It is non-trivial to decide when to abort a simulation that cannot reach the
target. Several possibilities are discussed in [ADKW20, Sec. 4]. In particular,
one can assume that the model structure is known (grey-box) or that the
model is completely unknown (black-box).

– We need not have small confidence intervals for all transitions in the model.
On the contrary, it suffices to only partially explore the model, using heuris-
tics such as bounded real-time dynamic programming [BCC+14].



2 M. Weininger

Inferring best- and worst-case probabilities Probabilistic systems with in-
tervals on the transition probabilities have been researched for several decades.
Most commonly, they are identified by prepending “interval” (e.g. interval Markov
chain [JL91,KU02]) or “bounded-parameter” (e.g. bounded-parameter Markov
decision process [GLD00]). There are several interesting questions associated
with them. For this work, we focus on the question what the “best” or “worst”
possible choice of probabilities is for every interval. By doing this, we can specify
two probabilistic systems with known probabilities: one that captures the best
possible scenario that is possible given our current knowledge, and one for the
worst possible instantiation of probabilities. Solving both these systems using
classical algorithms, we obtain bounds on the value of the original system.

We infer these best- and worst-case probabilities using the reduction given
in [WMK19]. In essence, we introduce a new state for every action of the original
system. This state can model every valid instantiation of the intervals. If we
assign this new state to ourselves, we obtain the best-case value; assigning it to
an adversary yields the worst-case value.

Combining the procedures to obtain a PAC-guarantee Executing these
two procedures one after the other, we reduce the problem of model checking a
system with unknown probabilities to model checking two systems with known
probabilities. With high probability, the intervals we inferred from the simula-
tions are correct, and thus the bounds we obtain from solving these two systems
are correct.

However, by executing the procedures once, we have no way to guarantee that
the bounds are close to each other. Hence, we have to ensure that we simulate
long enough such that the resulting confidence intervals are very small. Then,
solving the best- and worst-case system gives bounds that are less than the given
precision ε apart. One can naively calculate a number for how many simulations
have to be run in order to obtain small enough confidence intervals; however,
this number will be astronomically high and infeasible in practice [AKW19].
Instead, we can utilize the fact that many transitions are in fact irrelevant, and
that under proper guidance, our simulations will explore only the relevant part of
the state space. This can take a form similar to [AKW19, Algo. 7], replacing the
guaranteed BVI phase with the inferring the best- and worst-case probabilities.

As a final thought, observe that if one is not interested in a PAC-guarantee,
but rather a coarse estimate, applying the procedure once already yields bounds
on the value with a probabilistic guarantee. Thus, using a reasonable amount of
simulations, one might already obtain satisfactory results.
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A. Pérez3, and Jean-François Raskin1
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This is an extended abstract of the work [3].
In this work, we show how to combine synthesis, model-based learning, and

online sampling techniques to solve a scheduling problem featuring both hard and
soft constraints. We investigate solutions to this problem both from a theoretical
and from a more pragmatic point of view. On the theoretical side, we show how
safety guarantees (as understood in formal verification) can be combined with
guarantees offered by the probably approximately correct (PAC) learning frame-
work [6]. On the pragmatic side, we show how safety guarantees obtained from
automatic synthesis can be combined with Monte-Carlo tree search (MCTS) [5]
to offer a scalable and practical solution to solve the scheduling problem at hand.

The scheduling problem that we consider is defined as follows. A task system
is composed of a set of n preemptible tasks (τi)i∈[n] partitioned into a set F of
soft tasks and a set H of hard tasks. Time is assumed to be discrete and measured
e.g. in CPU ticks. Each task τi generates an infinite number of instances τi,j ,
called jobs, with j = 1, 2, . . . Jobs generated by both hard and soft tasks are
equipped with deadlines, which are relative to the respective arrival times of
the jobs in the system. The computation time requirements of the jobs follow a
discrete probability distribution, and are unknown to the scheduler but upper
bounded by their relative deadline. Jobs generated by hard tasks must complete
before their respective deadlines. For jobs generated by soft tasks, deadline misses
result in a penalty/cost. The tasks are assumed to be independent and generated
stochastically: the occurrence of a new job of one task does not depend on the
occurrences of jobs of other tasks, and both the inter-arrival and computation
times of jobs are independent random variables. The scheduling problem consists
in finding a scheduler, i.e. a function that associates, to all CPU ticks, a task
that must run at that moment; in order to: (i) avoid deadline misses by hard
tasks; and (ii) minimise the mean cost of deadline misses by soft tasks.

Here, we investigate learning techniques to build algorithms that can sched-
ule safely and optimally a set of hard and soft tasks if only the deadlines and
the domains of the distributions describing the tasks of the system are known
a priori and not the exact distributions. This is a more realistic assumption.
Our motivation was also to investigate the joint application of both synthesis
techniques coming from the field of formal verification and learning techniques
on an understandable yet challenging setting.

Contributions. First, we show the distributions underlying a task system with
only soft tasks are efficiently PAC learnable: by executing the task system for a



2 D. Busatto-Gaston et al.

polynomial number of steps, enough samples can be collected to infer ε-accurate
approximations of the distributions with high probability.

Then, we consider the general case of systems with both hard and soft
tasks. Here, safe PAC learning is not always possible, and we identify two
algorithmically-checkable sufficient conditions for task systems to be safely learn-
able. These crucially depend on the underlying MDP being a single maximal
end-component, as is the case in our setting. Subsequently, we can use robust-
ness results on MDPs to compute or learn near-optimal safe strategies from the
learnt models.

Third, in order to evaluate the relevance of our algorithms, we present ex-
periments of a prototype implementation. These empirically validate the effi-
cient PAC guarantees. Unfortunately, the learnt models are often too large for
the probabilistic model-checking tools. In contrast, the MCTS-based algorithm
scales to larger examples: e.g. we learn safe scheduling strategies for systems
with more than 1020 states. Our experiments also show that a strategy obtained
using deep Q-learning [2, 4] by assigning high costs to missing deadlines of hard
tasks does not respect safety, even if one learns for a long period of time and the
deadline-miss costs of hard tasks are very high (cf. [1]).
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ing for near-optimal scheduling. In: Abate, A., Marin, A. (eds.) Quantitative Evalu-
ation of Systems - 18th International Conference, QEST 2021, Paris, France, August
23-27, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12846, pp. 235–
254. Springer (2021). https://doi.org/10.1007/978-3-030-85172-9 13

4. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (Feb 2015)

5. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Diele-
man, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P.,
Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of
go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016).
https://doi.org/10.1038/nature16961

6. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)



Complexity and Decidability Results for
Verification of Deep Learning Models

Marco Sälzer and Martin Lange

School of Electr. Eng. and Computer Science, University of Kassel, Germany
https://www.uni-kassel.de/eecs/fmv

The reachability problem for neural networks. Deep learning has proved
to be very successful in a broad range of applications such as image recognition or
natural language processing but also safety-critical applications like autonomous
driving, medical or financial applications. Such applications often come with the
need for certification of safety properties. To guarantee their validity, one needs
to employ methods from the area of formal verification.

Formal verification of deep neural networks (NN) is a relatively new area of
research. Within this, most attention is given to efficiently solving the reachabil-
ity problem NNReach for NN which is defined as follows: given some specifica-
tion of valid inputs, some specification of valid outputs and a pretrained neural
network N , is there a valid input x such that N(x) is a valid output? Solving
this problem is of high practical relevance. For example, consider a NN used in
an image classification setting. A verification algorithm for NNReach could be
used to guarantee that there will be no misclassification for some specified set
of images.

An obvious question that arises with such a problem is that of its decidability,
resp. computational complexity. Katz et al. argued1 that NNReach is NP-
complete [3]. We show that this can be strengthened as follows: NP-hardness of
NNReach already holds for very simple specifications over very simple NN, for
instance with just one layer or which only use a very limited set of weights and
biases. These results imply that there is not much hope for classes of NN and
specifications which are of practical relevance and for which NNReach can be
solved efficiently.

NNReach Restricted to Simple Neural Networks. We consider classical
multi-layer neural networks with ReLU activation only, as these are very common
in practice. Furthermore, we consider conjunctions of linear inequalities over the
input, respectively output dimensions of a NN as input and output specifications.
We call a specification simple if each conjunct is of the form x · c ≤ d, where x is
some variable referring to an input or output dimension and c, d ∈ Q. Our first

1 Their argument for the upper bound is flawed, though, using unbounded values as
certificates. It merely shows recursive enumerability if anything. However, inclusion
in NP can still be shown to hold using the settings of internal ReLU nodes as
certificates [4].



major result is that NNReach restricted to NN of minimal depth and output
size in combination with simple specifications remains NP-hard.

Theorem 1 ([4]). NNReach is NP-hard for NN with output dimension one,
a single hidden layer and simple specifications.

Obviously, this result implies that any restriction to shallow NN does not lead
to efficiently verifiable classes of neural networks.

Our second major result is that NNReach remains NP-hard even if we
restrict it to NN that use just one negative weight/bias, one positive weight/bias
and a zero weight/bias and simple specifications.

Theorem 2 ([4]). Let c, d ∈ Q>0. NNReach restricted to NN that only use
−c, d and 0 as weight or bias and simple specifications is NP-hard.

We can also show that weight or bias 0 is not necessary if we allow for arbitrary
specifications. In other words, there is little chance to devise efficient solution
to NNReach without imposing extreme restrictions on the use of values for
weights and biases to deviate from what occurs in practice.

Similar Reachability Problems for Graph Neural Networks. Motivated
by these findings, we discuss investigations of a similar problem for another deep
learning model which has gained popularity recently: graph neural networks
(GNN), for computing functions over graphs. There are several variations of
this model, we consider a general one – the so called Message Passing Neural
Networks [1]. To the best of our knowledge, there are no noteworthy results yet
on the corresponding reachability problem for GNN verification so far. We start
with giving a thorough definition of problems similar to NNReach for the GNN
setting. We then discuss first findings for (un-)decidability results.

GNN are commonly used for two cases: node or whole-graph classification.
Let G be a graph and v a node in it. A node classifier takes G and v as input and
outputs a label, typically some real-valued vector, for v. A whole-graph classifier
takes G as input and outputs a label for the complete graph G.

For the node classification case, we define the problem NodeReach: given
some specification of valid nodes, some output specification, and a GNN N , is
there a graph G with valid node v inside such that N(G, v) is a valid output?
For the whole-graph case, we define the problem GraphReach: given some
specifications of valid graphs, some output specification of valid outputs, and a
GNN N , is there a valid graph G such that N(G) is a valid output?

A first, rather trivial result is that GraphReach is undecidable for specifi-
cations in first-order logic (FO). One can construct a straightforward reduction
from the satisfiability problem of FO over finite graphs, known to be undecidable
[5], to GraphReach. It can also be shown that NodeReach is decidable if we
restrict it to graphs of a fixed degree: in this case we can reduce NodeReach
to the problem of solving mixed-interger linear programs (MILP). This is even
a classic NP-complete problem [2].
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Because neural networks are commonly used in safety-critical applications, it
may be necessary to prove e.g. the absence of adversarial examples. This can
be done by propagating possible neuron activation values through the network.
The non-linearities introduced by the activation functions can be replaced by
an overapproximation. Alternatively, the problem is split into one branch per
linear region of the activation function. We focus on ReLUs activations, which
are commonly used and have two linear regions.

Counterexample-Guided Abstraction Refinement (CEGAR) [3] is the most com-
monly used technique to decide which splits to add. Here, initially all neurons are
overapproximated. Should the verification provide a counterexample that turns
out to be spurious, one overapproximation is replaced by a split, adding a new
branch. All branches can be explored in parallel. Because each added split limits
the values of neurons, computed bounds can only become tighter, and safety
properties that have previously been proven do not need to be checked again.

Execution Guided Overapproximation (EGO) [1] explores the tree of possible
splits in the opposite direction: First, a split is added for each neuron in the
network (++++ in Fig. 1). Should the constrained sub-problem satisfy all prop-
erties of interest, one split on one neuron is replaced by an overapproximation
(+++?). At some point, the verification might return a spurious counterexample
for the first time (++?? succeeds, +??? fails). Then, the subtree starting with
the sibling of the previous node (+-??) is explored by adding all possible splits
(+-++). Starting at the right-most leaf node, all left children of all its parents can
be processed in parallel. Because overapproximations are introduced, previously
computed bounds may be weakened and all properties need to be checked again.

Binary-Search Tree Exploration (BiSeTrEx) is the alternative technique pro-
posed by us. CEGAR keeps on adding new splits until the verification succeeds
for the first time, whereas EGO removes splits until it starts returning spuri-
ous counterexamples. Thus, both techniques can be described as searching for
the depth in which the verification result changes. To speed up this process, we
propose to add and remove multiple splits simultaneously, in a binary-search-
like fashion. After evaluating the root node, for N originally overapproximated
nodes, N/2 splits are added in one single step. If the verification fails, half of all
remaining overapproximated nodes are split until the verification succeeds. If it
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Fig. 1. Visualization of BiSeTrEx, displaying the possible splits for the first four neu-
rons of an exemplary network with eight neurons. A + or - in the n-th position stands
for a performed split of the n-th neuron, a ? for an overapproximation. Green nodes
would result in a successful verification, red nodes in a spurious counterexample. After
testing the unconstrained problem with overapproximations (????), BiSeTrEx splits on
four of the eight neurons (++++). In parallel, the subtree starting at -??? is explored.
As the verification succeeds, it next tries to split only two neurons (++??) and finally
only one neuron (+???). This results in a spurious counterexample. Thus, the left and
right children of +??? are explored individually in parallel as well as all left children
of parents of +???. In this instance, the right sub-tree has already been explored com-
pletely, but this may not be the case for larger examples.

succeeds, half of all previously added splits are replaced by an overapproxima-
tion. Therefore, BiSeTrEx finds the optimal number of overapproximations in
O(logN) steps, whereas CEGAR and EGO require O(N) iterations. Fig. 1 visu-
alizes a verification process using BiSeTrEx and highlights possible parallelism.
Previously computed results can be reused whenever new constraints are added.

[2] states that CEGAR can be sped up beyond the possibilities of EGO by
adding timeouts and other heuristics that abort the analysis of nodes with many
overapproximations. This is beneficial for abstract domains where performing
an overapproximation is slow, such as star sets [4]. The same technique can be
applied to BiSeTrEx, combining the best of both worlds for a fast verification
process. A prototype implementation of our technique is under development, and
we expect to present the first results by the time of the LiVe workshop.
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– Extended Abstract –

When developing a program, one of the main fundamental problems in prac-
tice is to get it correct. Especially for safety-critical systems, lives may depend on
the correct functioning of the software, for example, software controlling a car.
But also in less safety-critical areas, the verification of systems plays an impor-
tant economical role. Since its first days, it has been a challenge to get software
systems correct, and a plethora of different methods have been developed rang-
ing from debugging and testing to formal verification techniques. More generally,
formal methods have been developed over the past decades to support the rig-
orous development of software systems. See [1] for an expert survey on formal
methods, giving insight to the past, present, and future of formal methods.

On the other hand, artificial intelligence and as part of it machine learning is
currently en vogue for developing software based systems. Especially deep learn-
ing methods turned out to be successful when developing applications for speech
or image recognition, see for example [2–4], although it seems unclear, why such
methods actually perform well in practice [5]. In general, deep learning methods
may play one fundamental approach for synthesizing programs [6] rather than
programming them manually.

As such, one may come up with the fundamental question of how to verify
such networks for being sure that they adhere to what they are suppost to
achieve.

Property-Directed Verification of Recurrent Neural Networks A recent approach
for verifying properties of recurrent neural networks is given in [7]. It is observed
that a recurrent neural network can be understood as an infinite-state machine,
whenever it is used as a finite classifier. For such an infinite state system a
finite-state automaton may be learned using automata learning techniques such
as Angluin’s L* [8] as a surrogate model approximating the system at hand. The
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Fig. 1. Property-directed verification of RNNs

surrogate model may then be used to check whether it meets its specification,
for example using model checking techniques.

A surrogate model is a substitute model acting often in a specific role. [7]
intertwines the task of verification and of learning the surrogate model in the
form that a model is learned driven by the property to verify. While precise
answers are obtained for checking the property on the surrogate model and an
explicit counter example is provided if the underlying RNN does not satisfy the
property at hand, a successful verification in terms of the RNN is only given up-
to a given error probability. The latter is due to the fact that the infinite-state
RNN is only statistically compared with the surrogate model. The procedure is
sketched in Figure 1, where the specification to check is denoted by a language
L(A) of an automaton, the RNN is denoted by R and the surrogate model to be
learned is denoted by H as it acts as hypothesis in the setting of Angluin’s L*.

[7] shows that the method is indeed beneficial in identifying both violations
of a specification as well as the successful verification of properties (up-to a given
error probability).
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Abstract. Neural Networks (NN) have found their use in various ap-
plications, ranging from autonomous cars, medical imaging, to playing
computer games. Especially, their use in safety-critical systems led to
the question of how one can ensure their safety and reliability. This can
be seen as a two-fold area: one offline and the other online. Many recent
works have focused on the verification of NN, which is an offline proce-
dure. This means that a NN is trained and verified without ever being
applied in its destination (e.g. an autonomous car). This, however, relies
on the belief that the developer applying the verification knows what to
verify. Looking at the complex task of having a perception system for an
autonomous car, it is unlikely that all possible situations are described
beforehand and thus verified correctly. This is the main motivation for
the Monitoring of NN, which is an online application. During runtime of
the NN, e.g. when already applied in a car, the monitor will check the
decisions of the NN and raise a flag if it sees a problem. This is used
in particular to detect so-called out-of-distribution inputs. All inputs,
and especially predicted classes, that the NN has seen before are called
in-distribution since they are known. Everything else, that is new to the
NN, is called out-of-distribution.
In our paper ”Gaussian-based runtime detection of out-of-distribution
inputs for neural networks” which was published at ”Runtime Verifi-
cation 21”, we introduced a lightweight monitor for NN. It remembers
the inner state of the NN on the training data and develops from these
safety bounds. If the inner state of a new input lies outside this bound,
the monitor will assume that it is an out-of-distribution sample. The in-
ner state of the NN is the value of its neurons. Each neuron will output
certain values for each sample in one output class. These values are used
to fit a Gaussian distribution for each neuron and each class. Based on
the Gaussian, we define intervals, by using the 95-percentile. Any new
input to the neural network will then be evaluated for each neuron indi-
vidually, and if its value lies without the interval, the neuron will raise
a flag. If enough neurons in one layer raise their flag, the input will be
considered as out-of-distribution.
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I will present algorithms for learning Linear Temporal Logic (LTL) formulas
from specification sketches, which are partially specified formulas. The aim
of these algorithms is to help engineers to learn suitable specifications for the
formal verification of the systems they designed.

Formal verification is a time-tested method of ensuring the safe and reliable
operation of systems. Success stories of formal methods include application
domains such as communication systems, railway transportation, aerospace,
and operating systems to name but a few.

However, virtually all verification techniques assume that the specification
required for the verification or design of a system is available in a suitable for-
mat, is functionally correct, and expresses precisely the properties the engineers
had in mind. These assumptions are often unrealistic in practice. Formalizing
system requirements is notoriously difficult and error-prone.

To address this practical issue, we introduce a novel approach to learn formal
specifications, which we refer to as specification sketching. Inspired by recent
advances in program synthesis [3], our new paradigm allows engineers to express
their high-level insights about a system in terms of a specification sketch, where
parts that are difficult or error-prone to formalize can be left out. Moreover,
the engineer is asked to provide example executions of the system that the
specification should allow or forbid. Based on this additional data, a so-called
sketching algorithm then fills in the missing low-level details to learn a complete
specification.

While specification sketching is conceivable for a wide range of specification
languages, in this work, we focus on Linear Temporal Logic (LTL). The rationale
for this choice is twofold. First, LTL is popular in academia and widely used in
industry, making it the de facto standard for expressing (temporal) properties.
Second, LTL is well-understood and enjoys good algorithmic properties.

In the context of specification sketching for LTL, a sketch can leave logical
operators or even entire subformulas unspecified, while examples are ultimately-
periodic words (words of the form uvω, where u, v are finite words). For clearer
understanding of the setting, consider the request-response property P express-
ing that every request p has to be answered eventually by a response q. This

1



property can be formalized by the LTL formula ϕ := G(p → XF q), which uses
the standard temporal modalities F (“finally”), G (“globally”), and X (“next”).
However, assume, for the sake of this example, that an engineer is unsure how
to formalize P . In this situation, our sketching paradigm allows the engineer to
express high-level insight in the form of a sketch, say G(p → ?), where the ques-
tion mark indicates which part of the specification is missing. Additionally, the
engineer provides two examples: (1) a positive (infinite) trajectory ({p}{q})ω,
expressing that q is the response that should be used to answer a request, and
(2) a negative (infinite) trajectory {q}ω, intended to disallow the system to send
responses without requests. Our sketching algorithms then search for a substi-
tution for the question mark such that the completed LTL formula is consistent
with the examples (e.g., XF q).

It turns out that it is not always possible to find a substitution that is consis-
tent with the given examples. However, I will demonstrate a non-deterministic
algorithm that shows that the decision problem of checking whether such a sub-
stitution exists is in the complexity class NP. I will further present an effective
decision procedure that reduces the decision problem to a satisfiability problem
in propositional logic, thus allowing the use of optimized SAT solvers.

I will then present two sketching algorithms for LTL. The first algorithm
uses the presented decision procedure of as a sub-routine and transforms the
sketching problem into a series of LTL learning problems (i.e., in problems
of learning an LTL formula—without syntactic constraints—from positive and
negative examples). This transformation allows us to apply a diverse array
of learning algorithms for LTL, which have been proposed during the last five
years [1, 2]. The second sketching algorithm, on the other hand, extends the LTL
learning algorithm by Neider and Gavran [1] and uses a SAT-based technique
as an effective means to search for solutions of increasing size.

Finally, I will demonstrate some preliminary experimental results using our
prototype implementation—LTL-sketcher. In particular, I will emphasize that
our algorithms are effective in learning formulas by completing a variety of
sketches with different missing information.

The presentation will be based on a work under submission with Simon Lutz
and Daniel Neider.
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