Gaussian-based runtime detection of out-of-distribution
inputs for neural networks *

Vahid Hashemi2[0000-0002-9167-7417] Jan Kietinsky! [0000-0002-8122-2881] §ofanic
Mohr![0000-0002-8630-3218] 519 Emmanouil Seferis! 2

! Technical University of Munich, Germany
2 AUDI AG, Ettingerstr. 60, 85057 Ingolstadt, Germany

Abstract. In this short paper, we introduce a simple approach for runtime mon-
itoring of deep neural networks and show how to use it for out-of-distribution
detection. The approach is based on inferring Gaussian models of some of the
neurons and layers. Despite its simplicity, it performs better than recently intro-
duced approaches based on interval abstractions which are traditionally used in
verification.

1 Introduction

Learning deep neural networks (DNN) [2] has shown remarkable success in practically
solving a large number of hard and previously intractable problems. However, direct
applications in safety-critical domains, such as automated driving, are hindered by the
lack of practical methods to guarantee their safety, e.g. [|3/4]. This poses a serious prob-
lem for industrial adoption of DNN-based systems. Companies struggle to comply with
safety regulations such as SOTIF [42], both due to lack of techniques to demonstrate
safety in the presence of DNN as well as due to the actual lack of safety, e.g. accidents
in automated cars due to errors in DNN-based perception system used [6].

One of the key requirements is the ability to detect novel inputs [43]], for which the
DNN has not been trained and thus the only responsible answer is “don’t know”. Such
inputs are also called out-of-distribution (OOD) examples [20]. Whenever such inputs
occur, an alarm should be raised announcing the unreliability of the current output of
the DNN, so that rectifying actions can be taken. Various runtime monitors for this task
have already been proposed recently. Cheng et al. [[1]] monitor which subsets of neurons
in a given layer are activated for known inputs; whenever a very different subset is
activated, an alarm is raised. Henzinger et al. [[39]] monitor activation values of neurons
and envelop the tuples into hyper-boxes (multidimensional intervals) along the program
analysis tradition; whenever a very different tuple is observed (outside of the boxes), an
alarm is raised.

In this short paper, we propose a very light-weight and scalable approach. Simi-
larly to [39]], we monitor the activation values. However, instead of discrete and exact

* This research was funded in part by the DFG research training group CONVEY (GRK 2428),
the DFG project 383882557 - Statistical Unbounded Verification (KR 4890/2-1), the project
Audi Verifiable Al, and the BMWi funded KARLI project (grant 19A21031C).

2 Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

enveloping, we learn a more continuous and fuzzy representation of the recorded expe-
rienece, namely a Gaussian model of each monitored neuron. Whenever many neurons
have sufficiently improbable activation values on the current input, we raise an alarm.
Surprisingly, our simple monitor is equally or even more accurate than the similar state-
of-the-art [39] even though we take no correlation of the activation values of different
neurons into account and instead we monitor each of the neurons separately, in contrast
to the multi-dimensional boxes of [39].

Our contribution can be summarized as follows:

— We present a new and simple method for OOD detection based on Gaussian models
of neuron activation values.

— We show that our method performs better than state-of-the-art techniques for out-
of-distribution (OOD) detection.

Related Work In our work, we focus on the detection of OOD-inputs, arguably [20]]
one of the major problems in Al safety.

State of the art A recent work by Henzinger et al. [39] is very similar to our approach.
The authors consider the neuron activations of one layer for all samples of the train-
ing data. For each class in the dataset, they collect the activation vectors of the class
samples, and cluster them using k-Means [40]]. They increase the number of clusters
successively, until the relative improvement drops below a given threshold 7. For each
cluster, they construct a box abstraction that contains all samples of that cluster. In the
end, each class in the data corresponds to a set of boxes. Finally, during testing, they
check whether the activation vector of a new sample is contained in one of the boxes
of its predicted class; if not, they raise an alarm. This approach can be extended to
more layers, by taking the element-wise boolean AND of the layer “decisions”. That
is, an input is accepted if only if it is contained in the abstractions of all monitored
layers. While the idea of looking at the activations of neurons in a layer is similar to
our approach, the difference is in the detection of OOD samples. In contrast to using
box-abstractions, we use Gaussian models. This reflects better the actual distribution of
values of the neurons, as can be seen in Section 4.2

OOD-Detection Previous works have suggested, for example, using the maximum class
probability or the entropy of the predicted class distribution as an OOD indicator [21]],
or training a classifier to distinguish clean and perturbed data, using ensembles of clas-
sifiers trained on random shuffles of the training data [22]. Besides, two popular ap-
proaches closely resemble the methods of runtime monitoring, namely ODIN [23] and
the Mahalanobis-based detector [24]]. ODIN first applies temperature scaling on the
softmax outputs of a DNN to reduce the standard DNN overconfidence, and then ap-
plies a small adversarial-like perturbation of the input. If after that the maximum class
score is below some threshold, the sample is considered to be OOD.

In contrast, the detector of [24] measures the probability density of a test sample
by using a distance-based classifier. Another line of work involves generative models

Gaussian-based runtime detection of out-of-distribution inputs for neural networks 3

for OOD detection, attempting to model the distribution of the data, such as in [25]. By
definition, OOD detection runs at test time, and thus many proposed approaches can
be viewed under this setting. Other related approaches include using Bayesian learning
methods [[15]], which can output prediction uncertainties, DNN testing [3]], which are
methods attempting to find problematic inputs, or building DNN architectures that are
robust by construction, for example using interval bound propagation, abstract interpre-
tation, or other methods [[12/13114]].

2 Preliminaries

2.1 Deep Neural Networks

DNNSs come in various architectures suitable for different tasks, however, at the core,
they are composed of multiple /ayers of computation units called neurons. The task
of a neuron is to read an input, calculate a weighted sum, apply a function called the
activation function on it and output the result, called the activation value. We number
the layers 1,2, ..., L where layer 1 is called the input layer, layers 2,...(L — 1) are
called the hidden layers and layer L is called the output layer.

More formally, given an input Z to the DNN, we have:

ht =%

R =g 1=2,.. L

where ¢! (%) defines the element-wise computation of the neurons i = 1, ..., N; in layer
[. The details of the computation are not necessary to understand the following work.

DNN can perform various tasks, the most usual being classification and regression.
Whereas the first type labels its input with a category from a finite subset of classes, the
second type outputs non discrete but real values. We consider only classification DNNs
in this work. Neuron activations are vectors of activation values produced by neurons
in some layer of a DNN. It is generally believed that layers closer to the output encode
more complex features. This result has been supported by our results, which can be seen
in Table We refer to hl i = 1, ..., N, as the activation of neuron 4 in layer /.

3 Ouwur solution approach

In this section, we discuss our approach for synthesizing an OOD detector based on
Gaussian models. In statistics, Gaussian models are used to model the behavior of data
samples. We adapt this idea to model the behavior of a neuron by a Gaussian model.

Consider a DNN as a classifier that distinguishes between {ci, ..., cn, } = C classes.
One layer [of this DNN contains /N; neurons. For each class ¢, € C'in the training data
set, we feed samples x?”, j = 1,...,m, into the network, and record the activations
n;°(z;) of each neuron fori =1, ..., N;.

We collect those vectors ﬁf" , and calculate the mean and standard deviation, uf" , aic °
of these values for each monitored neuron. We assume that the distribution of these val-
ues is approximately Gaussian. Thus, we expect the majority of samples to fall within

4 Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

the range [p;° — ko, u;° + koi°], where k is typically a value close to 2, containing
95% of the samples. During testing, we feed a new sample x to the DNN. We then do
the following: we record the class ¢ that our DNN predicts on «, and also retrieve the
neuron activation values n¢(z). We check if the activations of each neuron 4 falls within
its range for the predicted class.

More formally, we check if
Vi=1,..,N; : ni(x) € [uf — kof, p§ + kof] (1)

For a better understanding, we have the intuition depicted in Figure|l} The data in the
plot is random but shall give an idea of how the approach works. There are two neurons
that output different values, which are depicted as black dots. On the one hand, they are
shown in a 2D-plane, which is used for the abstraction of Henzinger et al.; on the other
hand, they are shown projected onto one dimension next to the axes, for our approach.
The approach of Henzinger et al. fits interval boxes to the values that the neurons can
take. The interval boxes are drawn in blue. Our approach calculates intervals based on
fitted Gaussians. The mean of the Gaussian is depicted as a red cross next to the neuron
activations. The red line marks the interval that we consider as good for the neuron.

neuron 2

x
°0EDED @B OHD HNED END
L]

]
L]
[2
L]

[} e oo e e LU 1L 1 1} e e neuron 1
X

Fig. 1: This is an intuition of the Gaussian models on neuron activations. Black dots
mark the values of the neurons. Once, in a 2D-plane together with the blue boxes that
represent the abstraction of Henzinger et al., and once projected to one dimension only.
The red lines mark the interval [u — kof, u + ko] for the two neurons respectively.
Those intervals are the basis for our approach of OOD-detection.

Each neuron “votes” independently if the new sample is valid or not. Samples within
the distribution are expected to obtain a large number of votes, while OOD samples
should obtain less. Thus, we collect the votes of all neurons, and then we compare them
to a threshold; if they are below it, we consider x as an OOD sample, otherwise we
consider it as correct. In that way, we can detect OOD inputs at runtime.

Gaussian-based runtime detection of out-of-distribution inputs for neural networks 5

Note that this approach can also be extended to use multiple layers. For this, we
compute the votes for each of the monitored layers. If they are below the threshold in at
least one of the layers, we flag the sample as OOD.

An issue here is finding appropriate voting thresholds. For that, we use a suitable
validation set. Normally, we should not make assumptions for the OOD data, and as-
sume that we do not have access to them. In this case, we can use a suitable surrogate
validation set, containing another unrelated dataset, e.g. adversarial examples or noisy
images. In case we monitor more than one layer, the voting thresholds are computed
individually for each layer.

4 Experiments

In this section, we analyze the experimental results of our approach. We will apply our
approach for OOD detection to some example datasets and DNNs. We use the setting
of Henzinger et al. [39], and we compare our result with theirs.

4.1 Datasets and Training

There are 4 datasets on which we evaluate our approach: MNIST, F-MNIST, CIFAR-10
and GTSRB (German Traffic Sign Recognition Benchmark) [41]].

— MNIST is a dataset that contains images of digits. They shall be classified into ten
classes, i.e. 0,...,9.

F-MNIST consists of images of clothes, which shall also be classified into ten cat-
egories.

CIFAR-10 is made of images of ten distinct classes from different settings.
GTSRB contains images of German traffic signs that can be categorized into 43
classes.

All of the four datasets are used for classification. We train two different architec-
tures of DNNs, NN1 and NN2, with the architectures of [39]]. Those are:

— NN1: Conv(40), Max Pool, Conv(20), Max Pool, FC(320), FC(160), FC(80), FC(40),
FC(k)
— NN2: BN(Conv(40)), Max Pool, BN(Conv(20)), Max Pool, FC(240), FC(84), FC(k)

Here, F'C is a fully connected layer, Conv is a convolutional layer, M axPool is 2 x 2
max pooling, and BN is batch normalization. The activation function is always the
RELU. NN1 was trained 10 epochs for MNIST, and 30 for F-MNIST, while NN2 was
trained 200 epochs for CIFAR-10 and 10 for GTSRB. A learning rate of 10~2 and batch
size 100 were used during training. NN1 is used for MNIST and F-MNIST, while NN2
is used for CIFAR-10 and GTSRB.

The evaluation is performed on two measures: the detection rate (DTERR) and the
false alarm rate (FAR). The detection rate counts how many samples were correctly
marked as OOD out of all OOD inputs. The false alarm rate (also known as Type-1-
error) counts how many samples were marked as OOD but are not OOD, out of all
marked inputs.

6 Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

4.2 Gaussian Assumption

In this work, we used Gaussian distributions in order to approximate the output of each
neuron. To verify that this is a valid assumption, we show in the following the distribu-
tion of values of the neurons.

We pick each dataset and select one random neuron from one of the monitored
layers. Then, we plot the histogram of that neuron’s output. We also show the Gaussian
distribution we would expect to have, according to the measured p and o.

00
000 025 050 075 100 125 150 175 200

(a) MNIST layer 0 (b) MNIST layer 1

(d) F-MNIST layer 0 (e) F-MNIST layer 1

(g) CIFAR layer 0 (h) CIFAR layer 1 (i) CIFAR layer 2

75 50 -25 00 25 50 75 100 - 20 3

(j) GTSRB layer 0 (k) GTSRB layer 1 (1) GTSRB layer 2

Fig. 2: Histogram of neuron outputs, along with the Gaussian distribution with the sam-
ple mean and variance.

We see that there are some small differences. For some neurons, the Gaussian as-
sumption is very accurate, e.g. f,h,k, and 1. For some other cases the histograms indi-
cate a slightly different behavior, e.g. a,d,e,g,i. However, in general they show that the

Gaussian-based runtime detection of out-of-distribution inputs for neural networks 7

neuron’s outputs follow more a Gaussian behavior than a uniformly distributed one. It
seems especially that the problem is rather that the parameters 1 and o do not exactly fit
the true underlying Gaussian. One could think of calculating the parameters differently,
or even using other models in future. Overall, the assumption that the neuron’s outputs
are Gaussian-like seems to be true.

4.3 Evaluation Steps

Following the setting of Henzinger et al., we perform the following steps for each
dataset: we train the DNN for the first £ classes of the dataset, and consider the rest
as OOD. This results, for example, in a DNN that was only trained on the digits from 0
to 5. Digits from 6 to 9 are considered as OOD. Having now constructed the networks
and datasets in this way, we can apply our approach, and compare the results with the
ones of Henzinger et al.. We monitor all linear hidden layers of the DNNs for both ap-
proaches. We use the interval [— 20, u + 20] for each neuron and class label, while
for Henzinger’s approach, we use the parameters mentioned in their paper. Note that
the monitor of Henzinger et al. outputs boolean values (e.g. x is inside or outside of the
boxes), while ours outputs numerical scores (e.g. number of ”votes” for an input x). In
order to be able to compare the two approaches, we have to select a threshold for our ap-
proach, in order to convert its output to a boolean value (e.g. votes(z) < 7 = OOD).

For this, we set the threshold at a quantile of the in-distribution data, so that the FAR
is similar to the one of [39]. For example, for a quantile ¢ = 50%, we set the voting
threshold in a way that 50% of the known in-distribution data pass through. Having set
the FARs on a similar level, we can then compare the detected errors of the approaches.

In the case where we monitor more than one layer, we use the same quantile g in
every one of them, and then combine votes as described before, i.e. x is accepted if the
votes of each layer are above the corresponding threshold. Having a different quantile
threshold for every layer improves performance, but might also be prone to overfitting.
Note also that the threshold g is not the same across experiments: in each run, we modify
it in order to match the FAR of [39] on that particular experiment. The results are shown
in Figure 3]

Each of the datasets has its own plot, where we have in red the values that the
approach of [39] achieves, and in blue the values of our approach. For both of them, we
measure the detection rate (DTERR) shown as a solid line in the left plot, and the false
alarm rate (FAR) shown as a dashed line in the right plot. We see that the performance
of our approach is mostly comparable or better than [39]. Especially, on CIFAR, our
approach clearly outperforms the approach of Henzinger et al. in terms of the detection
rate.

Overall, our approach seems promising and shows already good results. However,
we also have to indicate some problems with both approaches, namely the occasional
low detection rate or high false alarm rates. This is problematic for industrial applica-
tions, and shows us the difficulties involved, and the need for stronger approaches.

Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

results MNIST (DTERR) results MNIST (FAR)
95 60|~ Henz etal FAR 7
ours, FAR %
/
90 50 y
/
85 /
\ 40 /
/
=80 < J
30 w4
75 -~
20 e
70 __,—"'_
—— Henz. etal., DTERR 10 T -
65 ours, DTERR z
0
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

(a) (b)

results F-MNIST (DTERR) results F-MNIST (FAR)

90 — Henz. etal., DTERR 709 ——- Henz.etal, FAR ;
ours, DTERR ours, FAR /
60 /
80 7
/
50 7
70 J
ST
40
= 60 * /
/ /
50 30 /
/
20 /
40 /
_____ /
30 09 o=t
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

©) (d)

results CIFAR (DTERR) results CIFAR (FAR)

904 — Henz. et al., DTERR 901 _~- Henz. etal, FAR -
ours, DTERR 80 ours, FAR _’,"
80 ;7
¥
70 70 7
/

60 60 9
= g
= 50 < 50 Ze

40 40 ,r’

30 30

20 ///

20 P
10
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

(e) ®

results GTSRB (DTERR) results GTSRB (FAR)

601 -~ Henz etal, FAR L=
98 — ours, FAR L
50 -7
9 \/r e
-
/
9 \ 40 ¥
® 92 25 v
90 o
20 S
88 A
7
P —— Henz etal., DTERR 10 e
ours, DTERR o

25 50 75 100 125 150 175 200 25 50 75 100

(® (b

Fig. 3: Comparison between the approaches of Henzinger et al. and ours, for the cases
of MNIST, F-MNIST, CIFAR , and GTSRB datasets. Here, DTERR and F AR are
shown in separate diagrams. The number of classes on which the network was trained

is depicted on the x axis.

Gaussian-based runtime detection of out-of-distribution inputs for neural networks 9

4.4 Parameter Study

In this section, we perform a study on the parameters of our approach. For simplicity,
we focused on the MNIST dataset. The DNN in this case was thus NN1 with a total of
eight layers. We want to particularly investigate the effects of the number of layers.

Layers ‘DTERR (%) FAR (%)

Layers‘DTERR (%) FAR (%)

(5,6) 70.3 8.3

5 44.6 8.7
6,7) 77.0 6.5

6 69.2 53
(7.8) 76.4 6.8

7 73.0 54
(6,7.8) 79.5 75

8 735

(5.6,7.8)] 800 9.8

Table 1: Results on different layers, and different combination of layers. The evaluation
is performed on the detection rate and the false alarm rate. Layers closer to the output
layer show a higher detection rate than layers earlier in the DNN. The combination of
several layers only results in a small improvement compared to the usage of only one
layer.

At first, we look at different layers in the DNN. The fifth layer seems to contain less
important information in comparison to layer six, seven, and eight. When we only mon-
itor layer five, the DTERR is almost 20% lower as for the other layers, while the FAR
does not change significantly. We can thus verify the intuition that the features of the
later layers in a DNN are more meaningful. If we combine the voting of several lay-
ers, we can see that the detection rate is slightly increased. Especially, the bad DTERR
of 44% by only using layer five can be drastically improved by adding the knowledge
of layer six, namely to 70%; while the FAR even decreases slightly. The combination
of other layers can still increase the DTERR up to 80.0%, however, it comes with a
slightly higher false alarm rate. Thus, for a more light-weight approach, it could be
recommended to stick with fewer layers. Additionally, there may also be another differ-
ent voting system for several layers, e.g. incorporate a weighted voting system for the
layers and granting later layers more influence on the result.

5 OQOutlook

A natural next step would be to use additional information given by the correlation
between the neurons. So far, we only considered the Gaussians of each neuron indepen-
dently.

Instead, we can consider a subset of neurons n; € S and fit a joint Gaussian distri-
bution N (ug, Xs) on them. This subset can be an entire layer, where we fit a Gaussian
distribution on the entire vector of layer activations, but it can also be a smaller subset
of neurons. This offers the advantage of reduced computations, and an easier estimation
of the covariance matrix (which is hard in high dimensions). The approach is flexible,
and allows us to consider arbitrary subsets of neurons with varying sizes. Predictions

10 Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

can then be combined again by voting. For multidimensional Gaussian distributions, a
simple threshold with p and o is no longer possible. Instead, one can use the Mahanalo-
bis distance, M?(x) = (z — u)T X~ (x — p), which is a notion of distance from the
distribution center. A suitable threshold for M (z) is then to be calculated.

Besides, for a subset of neurons, a more precise model that can be used is a mixture
of Gaussians. This might be more accurate since the Gaussian distributions as above
are only imprecise approximations of the true distribution, while in contrast, Gaussian
mixture models can approximate any probability distribution to any precision.

6 Conclusion

In this work, we considered the problem of runtime monitoring of DNNs, which forms
an important step towards applying deep learning to safety-critical systems. Specifi-
cally, we focused on the sub-problem of OOD detection, and developed a lightweight
detection method based on Gaussian models of neuron activation values. This can be
extended in various ways as described before, and gives more accurate results than the
recent work of Henzinger et al. [39]. Interestingly, the results suggest that reflecting
correlation of the activation values (as in [39]) is less important than handling outliers
through voting on learnt models (as here). Actually, the rigid and complete coverage by
the boxes does not seem as adequate as the learnt approximations.

While we showed already a good efficiency on OOD inputs, the industrial require-
ments suggest that further improvements are necessary to reach real-world applicability.
Our preliminary results invite further investigation along these directions. In particular,
runtime monitoring by more complex probabilistic models, such as Gaussian mixtures,
or using DNN-based probability estimation methods such as Normalizing Flows seem
very promising.

References

1. C.-H. Cheng, G. Niihrenberg, H. Yasuoka: Runtime Monitoring Neuron Activation Patterns.
DATE, 2019. URL: https://arxiv.org/abs/1809.06573

2. L. Goodfellow, Y. Bengio, A. Courville: Deep Learning. MIT Press, 2016. URL: https:
//www.deeplearningbook.org/

3. X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, X. Yi: A Survey
of Safety and Trustworthiness of Deep Neural Networks. CoRR, 2018. URL: https://
arxiv.org/abs/1812.08342

4. P. Ortega, V. Maini: Building safe artificial intelligence: spec-
ification, robustness, and assurance. Deep Mind blog, 2018.
URL.: https://medium.com/@deepmindsafetyresearch/
building-safe-artificial-intelligence-52f5f75058f1

5. C.Szegedy, W. Zaremba, . Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus: Intriguing
properties of neural networks. ICLR, 2014. URL: https://arxiv.org/abs/1312.
6199

6. Wikipedia: List of self-driving car fatalities. Wikipedia article, 2018. URL: https://en.
wikipedia.org/wiki/List-of-self-driving-car—fatalities

7. A. Kurakin, I. Goodfellow, S. Bengio: Adversarial Machine Learning at Scale. ICLR, 2017.
URL: https://arxiv.org/abs/1611.01236

https://arxiv.org/abs/1809.06573
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://arxiv.org/abs/1812.08342
https://arxiv.org/abs/1812.08342
https://medium.com/@deepmindsafetyresearch/ building-safe-artificial-intelligence-52f5f75058f1
https://medium.com/@deepmindsafetyresearch/ building-safe-artificial-intelligence-52f5f75058f1
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://en.wikipedia.org/wiki/List-of-self-driving-car-fatalities
https://en.wikipedia.org/wiki/List-of-self-driving-car-fatalities
https://arxiv.org/abs/1611.01236

Gaussian-based runtime detection of out-of-distribution inputs for neural networks 11

8. L. J. Goodfellow, J. Shlens, C. Szegedy: Explaining and Harnessing Adversarial Examples.
ICLR, 2015. URL: https://arxiv.org/abs/1412.6572

9. N. Carlini, D. Wagner: Adversarial Examples Are Not Easily Detected: Bypassing Ten Detec-
tion Methods. Alsec, 2017. URL: https://arxiv.org/abs/1705.07263

10. G. Katz, C. Barrett, D. Dill, K. Julian, M. Kochenderfer: Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. CAV, 2017. URL: https://arxiv.org/abs/
1702.01135

11. V. Tjeng, K. Xiao, R. Tedrake: Evaluating Robustness of Neural Networks with Mixed —
Integer Programming. ICLR, 2019. URL: https://arxiv.org/abs/1711.07356

12. E. Wong, Z. Kolter: Provable Defenses against Adversarial Examples via the Convex Outer
Adversarial Polytope. ICML, 2018. URL: https://arxiv.org/abs/1711.00851

13. S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic, T. Mann,
P. Kohli: On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust
Models. NIPS, 2018. URL: https://arxiv.org/abs/1810.12715

14. M. Mirman, T. Gehr, M. Vechev: Differentiable Abstract Interpretation for Provably
Robust Neural Networks. ICML, 2018. URL: https://files.sri.inf.ethz.ch/
website/papers/icmll8-diffai.pdf

15. R. McAllister, Y. Gal, A. Kendall, M. van der Wilk, A. Shah, R. Cipolla, A. Weller: Concrete
Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning. [JCAI,
2017. URL: https://www.ijcai.org/Proceedings/2017/661

16. C. Olah et. al.: The Building Blocks of Interpretability. Distill article, 2018. URL: https:
//distill.pub/2018/building-blocks/

17. C. Guo, M. Rana, M. Cisse, L. van der Maaten: Countering Adversarial Images using Input
Transformations. ICLR, 2018. URL: https://arxiv.org/abs/1711.00117

18. J. H. Metzen, T. Genewein, V. Fischer, B. Bischoff: On Detecting Adversarial Perturbations.
ICLR, 2017. URL: https://arxiv.org/abs/1702.04267

19. R. Feinman, R. R. Curtin, S. Shintre, A. B. Gardner: Detecting Adversarial Samples from
Artifacts. Arxiv preprint, 2017. URL: https://arxiv.org/abs/1703.00410

20. Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, Dan Mané:
Concrete Problems in Al Safety. CoRR, 2016. URL: https://arxiv.org/abs/1606.
06565

21. D. Hendrycks, K. Gimpel: A Baseline for Detecting Misclassified and Out-of-Distribution
Examples in Neural Networks. ICLR, 2017. URL: https://arxiv.org/abs/1610.
02136

22. B. Lakshminarayanan, A. Pritzel, C. Blundell: Simple and Scalable Predictive Uncer-
tainty Estimation using Deep Ensembles. NIPS, 2017. URL: https://arxiv.org/abs/
1612.01474

23. S.Liang, Y. Li, R. Srikant: Enhancing The Reliability of Out-of-distribution Image Detection
in Neural Networks. ICLR, 2018. URL: https://arxiv.org/abs/1706.02690

24. K. Lee, K. Lee, H. Lee, J. Shin: A Simple Unified Framework for Detecting Out-of- Distri-
bution Samples and Adversarial Attacks. NIPS, 2018. URL: https://arxiv.org/abs/
1807.03888

25. J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. A. DePristo, J. V. Dillon, B. Lak-
shminarayanan: Likelihood Ratios for Out-of-Distribution Detection. NeurIPS, 2019. URL:
https://arxiv.org/abs/1906.02845

26. S. Ren, K. He, R. Girshick, J. Sun: Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. NIPS, 2015. URL: https://arxiv.org/abs/1506.
01497

27. J. Redmon, S. Divvala, R. Girshick, A. Farhadi: You Only Look Once: Unified, Real-Time
Object Detection. CVPR, 2016. URL: https://arxiv.org/abs/1506.02640

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1711.07356
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1810.12715
https://files.sri.inf.ethz.ch/website/papers/icml18-diffai.pdf
https://files.sri.inf.ethz.ch/website/papers/icml18-diffai.pdf
https://www.ijcai.org/Proceedings/2017/661
https://distill.pub/2018/building-blocks/
https://distill.pub/2018/building-blocks/
https://arxiv.org/abs/1711.00117
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1703.00410
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1706.02690
https://arxiv.org/abs/1807.03888
https://arxiv.org/abs/1807.03888
https://arxiv.org/abs/1906.02845
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640

12 Vahid Hashemi, Jan Kfetinsky, Stefanie Mohr, and Emmanouil Seferis

28. X. Chen, H. Ma, J. Wan, B. Li, T. Xia: Multi-View 3D Object Detection Network for Au-
tonomous Driving. CVPR, 2017. URL: https://arxiv.org/abs/1611.07759

29. J. Ku, M. Morzifian, J. Lee, A. Harakeh, S. Waslander: Joint 3D Proposal Generation and Ob-
ject Detection from View Aggregation. IROS, 2018. URL: https://arxiv.org/abs/
1712.02294

30. C.R. Qi, W. Liu, C. Wu, H. Su, L. J. Guibas: Frustum PointNets for 3D Object Detection
from RGB-D Data. CVPR, 2018. URL: https://arxiv.org/abs/1711.08488

31. Y. LeCun, C. Cortes: The MNIST database of handwritten digits. NIST, 1998. URL: http:
//yann.lecun.com/exdb/mnist/

32. J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel: The German Traffic Sign Recognition Bench-
mark: A multi-IJCNN, 2011. URL: http://benchmark.ini.rub.de/

33. A. Geiger, P. Lenz, R. Urtasun: Are we ready for Autonomous Driving? The KITTI Vi-
sion Benchmark Suite. CVPR, 2012. URL: http://www.cvlibs.net/datasets/
kitti/

34. 1. J. Goodfellow, J. Shlens, C. Szegedy: Explaining and Harnessing Adversarial Examples.
ICLR, 2015. URL: https://arxiv.org/abs/1412.6572

35. A. Kurakin, I. Goodfellow, S. Bengio: Adversarial examples in the physical world. ICLR,
2017. URL: https://arxiv.org/abs/1412.6572

36. A. Krizhevsky: Learning Multiple Layers of Features from Tiny Images. Toronto University,
2009. URL: https://www.cs.toronto.edu/~kriz/cifar.html

37. AUDI AG (Private Communication). 2020.

38. K. P. Murphy: Machine Learning: a Probabilistic Perspective. MIT Press, 2012.

39. T. A. Henzinger, A. Lukina, C. Schilling: Outside the Box: Abstraction-Based Monitoring
of Neural Networks. ECAI 2020, URL: https://arxiv.org/abs/1911.09032

40. C. M. Bishop: Pattern recognition and machine learning Springer, 2006

41. J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The German Traffic Sign Recognition
Benchmark: A multi-class classification competition. In Proceedings of the IEEE International
Joint Conference on Neural Networks, pages 1453-1460. 2011.

42. ISO/PAS 21448. “Road vehicles - Safety of the intended functionality”. URL:
“https://www.iso.org/obp/ui/#iso:std:70939:en”

43. Marco A. F. Pimentel, David A. Clifton, Lei A. Clifton, and Lionel Tarassenko: ‘A review of
novelty detection’, Signal Processing, 99, 215-249, (2014).

https://arxiv.org/abs/1611.07759
https://arxiv.org/abs/1712.02294
https://arxiv.org/abs/1712.02294
https://arxiv.org/abs/1711.08488
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://benchmark.ini.rub.de/
http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://www.cs.toronto.edu/~kriz/cifar.html

	Gaussian-based runtime detection of out-of-distribution inputs for neural networks

