
Owl: A Library for
ω-Words, Automata, and LTL

Jan Křet́ınský, Tobias Meggendorfer, and Salomon Sickert

Technical University of Munich

Abstract. We present the library Owl (Omega-Words, automata, and
LTL) for ω-automata and linear temporal logic. It forms a backbone of
several translations from LTL to automata and related tools by different
authors. We describe the functionality of the library and the recent expe-
rience, which has already shown the library is apt for easy prototyping of
new tools in this area.

1 An Owl is Born: Introduction

ω-automata are finite automata over infinite words. As opposed to finite au-
tomata over finite words, there is not a single acceptance condition, but a wide
variety of possibilities, each being more appropriate for certain applications. To
give a few examples, non-deterministic Büchi automata are the most used kind,
useful in many contexts, including the modelling and analysis of reactive systems,
where both the system and the property of interest, say in linear temporal logic
(LTL) [31], are transformed into these automata. In contrast, the classical ap-
proach for synthesis of reactive systems prefers deterministic parity automata.
Further, while the textbook approach to probabilistic LTL model checking suggest
to translate LTL formulae to deterministic Rabin automata, recent approaches
show that deterministic generalized Rabin automata or limit-deterministic au-
tomata are more preferable. Consequently, a zoo of automata arises, both due
to theoretical limitations of certain kinds as well as practical efficiency. While
the theoretical complexity of the transformations between the automata and of
translations from LTL to automata is long settled, the research on practically
more efficient approaches is flourishing, both for non-deterministic [6, 7, 14, 36, 15,
16, 3, 8] and more recently deterministic [22, 2, 10, 18, 12, 34, 11, 19, 13] automata.
Notably, while these constructions are based on diverse ideas, their implementation
requires almost the same infrastructure.
Tools in this area have very different purposes, ranging from tools for one specific
task, e.g. translating LTL into a particular type of automaton, e.g. [15, 3, 20, 19,
21], to educational GUI tools demonstrating the constructions, e.g. JFLAP [32],
to tools implementing a comprehensive collection of algorithms from literature,
e.g. GOAL [38], to tool sets with a highly configurable CLI procedures focusing
on efficiency, e.g. Spot [8]. We contribute to this spectrum with the library Owl,
which enables easy and fast development of transformation/translation tools, yet
yielding efficient implementations.
Owl is a full-fledged library for manipulating ω-automata and LTL both on low
and high level. One of the main characteristics is that it links the functionality

for automata and logic in a very tight and explicit way, providing additional
support for “semantic” translations of LTL to automata. These are translations
where states are described using structures over logical formulae, as we know it
from the classical, e.g. the tableaux-based, tradition. This tradition was disrupted
for deterministic automata due to Safra’s construction [33], where the meaning
of a state (the language it recognizes) cannot be easily described in terms of
the meaning of the corresponding formulae. The “semantic” tradition has been
restored recently in the works on deterministic automata cited above.

Apart from this characteristics, our library has several other user-friendly
traits and distinguishing features. For instance, it supports parallelism, it is built
according to the on-the-fly philosophy, it is written in Java (with no memory
management issues left for the user, being more accessible to students), extensive
pipe-style CLI support for quick and easy prototyping, and an easy-to-configure
testing framework checking correctness of translations written with the library.

In this tool paper, we briefly describe the functionality of the library and then
provide a series of actual use cases (not only by the authors), demonstrating the
usability and particular advantages of this library.

2 The Anatomy of the Owl: Functionality

Owl (Omega-Words, automata, and LTL) arose from the needs when implement-
ing Rabinizer 3.1 [21, 12] and ltl2ldba [34]. When developing such translations
a lot of infrastructure is necessary, e.g., LTL parsing and representation, while
the actual construction is only a small fraction of the written code. Thus, we
implemented commonly needed functionality in a reusable Java library for LTL
and ω-automata and extended it with numerous features to provide a flexible
infrastructure for rapid and seamless development of algorithms in these domains.

2.1 Data Structures and Algorithms

The majority of data structures and algorithms concerns LTL and automata.
LTL. The library provides an LTL parser, a simplifier with state-of-the-art rewrite
rules, classification into syntactic fragments and transformation into normal forms.
Additionally, a parser for the synthesis specification format TLSF [17] is available
and includes a conversion to LTL.

Further, the LTL support comes with efficient rewriting according to the LTL
expansion laws, e.g. [4]. This enables the decomposition of temporal formulas into
directly checkable assertions on the current position and on the immediate tempo-
ral successor, e.g. aUb ≡ b ∨ (a ∧X(aUb)). As such, they are a core component
of both classic, e.g. tableaux-based, as well as recent semantic translations.
Automata. The library provides support for deterministic and non-deterministic
ω-automata with both classic acceptance conditions, e.g., Büchi, coBüchi, Rabin
and parity, as well as, e.g., like generalized Rabin [25] or Emerson-Lei acceptance
[9]. Internally, acceptance is represented as transition-based acceptance and a
conversion to and from state-based acceptance for interfacing with external tools
is present.

2

Automata can either be stored and modified explicitly, meaning the whole
state-space and transitions are kept in memory, or defined implicitly by specifying
initial states and a method for successor computation. The latter approach has
two main advantages: First, new constructions can be implemented with little
effort, transferring the definition of the successor relation into code. For example,
see Appendix B for a two-page Java implementation of Safra’s determinization
procedure. Second, automata can be conveniently traversed on the fly without
storing the transition system, allowing operations on huge or potentially even
infinite transition structures.

For automata, classic algorithms such as decomposition into strongly connected
components (SCC) and lasso-based emptiness checks are included. Furthermore,
constructions such as union, intersection and degeneralization are present. In
addition, modifications of the transition structure and the acceptance conditions
are supported, e.g., removal of non-accepting or unreachable parts of the state
space, completing the transition relation, and simplifications of the acceptance
condition. Acceptance sets are stored as edge labels for efficient rewriting, sup-
porting arbitrarily sized acceptances, compared to, e.g., Spot [8], which supports
at most 32 sets due to its focus on (generalized) Büchi conditions.

2.2 Interfacing

There are two ways to interact with Owl: On the one hand, there is a command-
line interface with text-based formats, e.g., (Spot-style) LTL, TLSF [17], and
the Hanoi ω-automaton format (HOA) [1]. This approach is completely agnostic
of the implementation, but the whole output is always constructed, which is
prohibitively expensive for huge outputs where only a small fraction might be
needed. On the other hand, there is a Java and a (specialized) C++ API offered
by Owl, which allows fine-grained access and exposes the on-the-fly nature of most
of the translations to external code.
Command-line Interface. Major functionality of the library is available via a
pipe-style CLI, which makes it easy to specify the sequence of procedures (input
parsing, translations, conversions, statistics and serialization) to be performed. For
example, owl ltl --- simplify-ltl --- ltl2dpa --- hoa reads LTL formu-
las from stdin line-by-line, simplifies them using the default simplifier, translates
them to DPAs and writes them to stdout in the HOA format. This can be
extended to advanced pipelines, e.g., owl -I "in.ltl" --- ltl --- ltl2dgra
--- aut-stat "DGRA:%s" --- dgra2dra --- aut-stat "DRA:%s" --- null.
This pipeline reads LTL formulas from the file in.ltl, translates them to DGRAs
and DRAs, while outputting the respective sizes of the automata, and finally
discards the actual output, saving the time needed for serialization.

Moreover, we support several sources and sinks for data. While one can simply
process data from files and the command line, we also added a server mode to
reduce the JVM start-up cost, where I/O is bound to a socket. Further details on
the CLI together with an in-depth example can be found in Appendix A.
Java and C++ API. Java and Java-like (e.g., Scala) applications can import
most of Owl and have fine-grained control. For C++ tools, there exists a specialized
interface to access core functionality of the library. Among other things, this

3

enables C++ code to iteratively explore automata state by state instead of forcing
a complete construction. This iterative exploration is a core component of the
state-of-the-art synthesis tool Strix [29] and is crucial for its performance.

2.3 Development Infrastructure and Scalable Architecture

Testing. Small changes to a translation can easily introduce bugs. Thus a test
suite is included, which provides several input sets and cross-checks each transla-
tion, developed with Owl, on hundreds of formulae [26] using ltlcross [8]. Apart
from detecting bugs, the test suite offers further conveniences, e.g., it automati-
cally generates an image of an erroneous automaton together with an erroneous
run. Moreover, various statistics of the generated automata are displayed, usable
for performance testing. Lastly, integration of a newly developed translation can
be achieved by a few lines of JSON, see Appendix B for an example.
BDDs. Both the LTL part and the automata part of the library use binary
decision diagrams (BDD) for some aspects of their functionality, e.g., for a compact
representation edge sets and (propositional) equivalence checks of formulas. We
implemented our own pure Java BDD library JBDD [28], to (i) achieve portability,
not requiring users to compile, e.g., CUDD, and (ii) provide an efficient and tuned
implementation for all used BDD operations, e.g. substitution of variables, called
compose. Particularly, compose is fundamental for a symbolic implementation of
the semantic constructions and greatly improves their runtime compared to the
explicit variants. Since compose-related operations often consume well over half of
the runtime, Owl offers several fine-tuned variants, further improving performance.

3 The Owl in the Wild: Use Cases

Owl has been successfully used for several published tools and student projects,
demonstrating versatility and usability even for less experienced users. To name a
few, the following published tools (in alphabetical order) using Owl are available:

Delag [30] translates LTL into deterministic Emerson-Lei automata. Reusing
other translations based on Owl, see Rabinizer [23], it adds specialized
constructions for fragments of LTL, exploiting a succinct encoding coupled to
the Emerson-Lei acceptance condition.

MoChiBa [35] is an extension of PRISM [27] and uses limit-deterministic automata
for quantitative model checking of Markov decision processes [34]. Due to a
tight integration with Owl, additional information on the automata can be
accessed, optimizing the construction.

Rabinizer [23] is a collection of tools translating LTL to various types of deter-
ministic automata. It uses a fully BDD-based successor computation of Owl,
improving performance over the previous versions. The current distribution
of Owl includes the latest version of Rabinizer (4.0).

Strix [29] constructs controllers (either Mealy machines or AIGER circuits) from
LTL specifications via parity games. Constructing the underlying automata
and solving the parity games take an incremental approach and make use of
the on-the-fly implementation of the translations.

4

The list of student projects includes1

– a re-implementation of Seminator [5],
– a specialized translation of the (F, G, X)-fragment of LTL to deterministic

parity automata, and
– reactive synthesis exploiting the Owl-supported semantic labelling of the

automata produced by Rabinizer through learning approaches.

Furthermore, rLTL (robust LTL) [37] can be easily transformed into LTL using
Owl2. Finally, to illustrate the ease with which new translations can be written,
we implemented the notoriously complicated and hard-to-implement [24] Safra’s
determinization procedure [33], with the complete code listed in Appendix B.
A detailed analysis of the lines of code needed to implement the mentioned
translations and the percentage of library that is used can be found in Appendix C.

4 This is not the End: Conclusion

We have presented the library Owl, which provides infrastructure for easy de-
velopment of efficient prototypes in the area of LTL and automata. It has al-
ready demonstrated its re-usability in several projects, also without the presence
of the library authors. For instance, our experience with Master students has
demonstrated that a tool for a complex translation, such as [5], can be easily
implemented using roughly 400 lines of code, achieving performance comparable
to the original dedicated tool. One simply defines the mathematical type of the
state space, the initial state, the successor function with the acceptance marking,
whereas the rest is taken care of by the library. The library can be found at
https://owl.model.in.tum.de, including code, documentation, references and
an online demo. We greatly appreciate comments and suggestions.

References

1. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller, D. Parker,
and J. Strejček. The Hanoi omega-automata format. In CAV, Part I, 2015.

2. T. Babiak, F. Blahoudek, M. Křet́ınský, and J. Strejček. Effective translation of
LTL to deterministic Rabin automata: Beyond the (F, G)-fragment. In ATVA, 2013.

3. T. Babiak, M. Křet́ınský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In TACAS, 2012.

4. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
5. F. Blahoudek, A. Duret-Lutz, M. Klokočka, M. Křet́ınský, and J. Strejček. Seminator:

A tool for semi-determinization of omega-automata. In LPAR, 2017.
6. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In FM, 1999.
7. M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for

linear temporal logic. In CAV, 1999.
8. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.

Spot 2.0 — a framework for LTL and ω-automata manipulation. In ATVA, 2016.
9. E. A. Emerson and C. Lei. Modalities for model checking: Branching time strikes

back. In POPL, 1985.
1 Authored by Florian Barta, Matthias Franze, and Sebastian Fiss, respectively.
2 Originally implemented by Daniel Neider.

5

10. J. Esparza and J. Křet́ınský. From LTL to deterministic automata: A Safraless
compositional approach. In CAV, 2014.

11. J. Esparza, J. Křet́ınský, J.-F. Raskin, and S. Sickert. From LTL and limit-
deterministic Büchi automata to deterministic parity automata. In TACAS, 2017.

12. J. Esparza, J. Křet́ınský, and S. Sickert. From LTL to deterministic automata - A
safraless compositional approach. Formal Methods in System Design, 2016.

13. J. Esparza, J. Kret́ınský, and S. Sickert. One theorem to rule them all: A unified
translation of LTL into ω-automata. 2018. Preprint at arxiv.org/abs/1805.00748.

14. K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In CONCUR, 2000.
15. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV, 2001.

Tool accessible at http://www.lsv.ens-cachan.fr/˜gastin/ltl2ba/.
16. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation

of LTL formulae to Büchi automata. In FORTE, 2002.
17. S. Jacobs, F. Klein, and S. Schirmer. A high-level LTL synthesis format: TLSF v1.1.

In Fifth Workshop on Synthesis (SYNT@CAV), 2016.
18. D. Kini and M. Viswanathan. Limit deterministic and probabilistic automata for

LTL \ GU. In TACAS, 2015.
19. D. Kini and M. Viswanathan. Optimal translation of LTL to limit deterministic

automata. In TACAS, 2017.
20. J. Klein. ltl2dstar - LTL to deterministic Streett and Rabin automata. http:

//www.ltl2dstar.de/.
21. Z. Komárková and J. Křet́ınský. Rabinizer 3: Safraless translation of LTL to small

deterministic automata. In ATVA, vol. 8837 of LNCS, 2014.
22. J. Křet́ınský and J. Esparza. Deterministic automata for the (F,G)-fragment of

LTL. In CAV, vol. 7358 of LNCS, 2012.
23. J. Křet́ınský, T. Meggendorfer, S. Sickert, and C. Ziegler. Rabinizer 4: From ltl to

your favourite deterministic automaton. In CAV, 2018. To appear.
24. O. Kupferman. Recent challenges and ideas in temporal synthesis. In SOFSEM, vol.

7147 of LNCS. Springer, 2012.
25. J. Křet́ınský and J. Esparza. Deterministic automata for the (F,G)-fragment of

LTL. In CAV, 2012.
26. J. Křet́ınský, T. Meggendorfer, and S. Sickert. LTL Store: Repository of LTL

formulae from literature and case studies. CoRR, abs/1805.xxxx, 2018.
27. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-

bilistic real-time systems. In CAV, 2011.
28. T. Meggendorfer. JBDD: A java BDD library. github.com/incaseoftrouble/jbdd.
29. P. Meyer, S. Sickert, and M. Luttenberger. Strix: Explicit reactive synthesis strikes

back! In CAV, 2018. To appear.
30. D. Müller and S. Sickert. LTL to deterministic Emerson-Lei automata. In GandALF,

2017.
31. A. Pnueli. The temporal logic of programs. In FOCS, 1977.
32. S. H. Rodger, H. Qin, and J. Su. Changes to JFLAP to increase its use in courses.

In SIGCSE, 2011.
33. S. Safra. On the complexity of omega-automata. In FOCS, 1988.
34. S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınský. Limit-deterministic büchi automata

for linear temporal logic. In CAV, 2016.
35. S. Sickert and J. Křet́ınský. Mochiba: Probabilistic LTL model checking using

limit-deterministic Büchi automata. In ATVA, 2016.
36. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In CAV,

2000.
37. P. Tabuada and D. Neider. Robust linear temporal logic. In CSL, 2016.
38. M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. GOAL for games, omega-automata, and

logics. In CAV, 2013.

6

A Command-Line Interface

Owl comes with a flexible command line interface intended to aid rapid development
and prototyping of various constructions, which we explain in this section. To give
full control over the translation process to the user, it offers a verbose, modular
way of specifying a particular tool-chain. This is achieved by means of multiple
building blocks, which are connected together to create the desired translation.
These “building blocks” come in three different flavours, namely input parsers,
transformers, and output writers, all of which are pluggable and extensible.

These three blocks are, as their names suggest, responsible for parsing input,
applying operations to objects, and serializing the results to the desired format,
respectively. We refer to a sequence of a parser, multiple transformers and an
output writer as “pipeline”.

Once configured, a pipeline is passed to an executor, which sets up the
input/output behaviour and actually executing the pipeline. Usually, users will be
content with reading from standard input or a file, which is handled the default
executor. Other possibilities, like a network server, will be mentioned later.

A.1 Basic usage

We explain this approach through a simple, incremental example. To begin with,
we chain an LTL parser to the ltl2dpa construction and output the resulting
automaton in the HOA format by

% owl ltl --- ltl2dpa --- hoa

Fixed input can be specified with -i "<input>", while -I "<input.file>" reads
the given file. Similarly, output is written to a file with -O "<output.file>"

To additionally pre-process the input formula and minimize the result automa-
ton, we simply add more transformers to the pipeline

% owl ltl --- simplify-ltl --- ltl2dpa --- minimize-aut --- hoa

For research purposes, we may be interested in what exactly happens during the
intermediate steps, for example how the rewritten formula looks like, or how large
the automaton is prior to the minimization. We could obtain this data by executing
several different configurations, which is cumbersome and time-consuming for
large data-sets. Instead, we offer the possibility of seamlessly collecting meta-data
during the execution process. For example, to obtain the above numbers in one
execution, we write

% owl ltl --- simplify-ltl --- string --- ltl2dpa ---
aut-stat --format "%S/%C/%A" --- minimize-aut --- hoa

Owl will now output the rewritten formula plus the amount of states, number of
SCCs and number of acceptance sets for each input to stderr (by default).

7

A.2 Extending the Framework

Often, a researcher might not only be interested in how the existing operations
performs, but rather how a new implementation behaves. By simply delegating to
an external translator, existing implementations can easily be integrated in such
a pipeline. For example, to delegate to Rabinizer 3.1, we simply write

% owl ltl --- simplify-ltl --- ltl2aut-ext
--tool "run-rabinizer.sh %f" --- minimize-aut --- hoa

The real strength of this framework comes from its flexibility. The command-line
parser is completely pluggable and written without explicitly referencing any of
our implementations. For example, in order to add a new algorithm one simply
has to provide a name (as, e.g., ltl2nba), an optional set of command line options
and a way of obtaining the configured translator from the parsed options. For
example, supposing that our new ltl2nba command has some --fast flag, the
whole description necessary is as follows:

public static final TransformerParser CLI_SETTINGS =
ImmutableTransformerParser.builder()

.key("ltl2nba")

.description("Translates LTL to NBA really fast")

.optionsDirect(new Options()
.addOption("f", "fast", false, "Turn on fast mode"))

.parser(settings -> {
boolean fast = settings.hasOption("fast");
return env -> (input, context) ->

LTL2NBA.apply((LabelledFormula) input, fast, env))
.build();

After registering these settings with a one-line call, the tool can now be used
exactly as ltl2dpa before. Additionally, the tool is automatically integrated into
the --help output of Owl, without requiring further interaction from the developer.
Parsers and serializers can be registered with the same kind of specification.

A.3 Advanced Usage

We also support some advanced features, some of which we highlight briefly.

Dedicated tools can easily be created by delegating to the generic framework.
For example, ltl2ldba is created by
public static void main(String... args) {

PartialConfigurationParser.run(args,
PartialModuleConfiguration.builder("ltl2ldba")

.reader(InputReaders.LTL)

.addTransformer(Transformers.LTL_SIMPLIFIER)

.addTransformer(LTL2LDBACliParser.INSTANCE)

.writer(OutputWriters.HOA)

.build());
}

8

This automatically sets up command line argument processing, input / output
parsing, help printing, etc.

Server mode listens on a given address and port for incoming TCP connections.
Each of these connections then is handled as a separate pair of input source /
output sink, i.e. the specified input parser reads from each connection and the
resulting outputs are written back to the client, all completely transparent to
the translation modules. For example, a ltl2dpa server is created by writing

% owl-server ltl --- simplify-ltl --- ltl2dpa --- hoa

Sending input is as easy as nc localhost 5050 and starting to type. We
also provide a small C utility owl-client dedicated to this purpose for users
without access to netcat. This allows easy usage as a fast back-end server,
since the JVM does not have to start for each input.

9

B Implementing Safra’s construction

To demonstrate the versatility of our library, we implemented Safra’s determiniza-
tion procedure from NBA to DPA. Although this procedure often is described
as being tedious to implement, it required only roughly 60 lines of code in Owl
(plus a few lines for simple data structures). In the following, we present the full
implementation, pruned of assertions and logging statements for brevity.

B.1 Construction Code

We first show the complete code block used to implement Safra’s construction. In
the following section, we present the used utility classes Label and Tree.

public static <S> Automaton<Tree<Label<S>>, RabinAcceptance>
build(Automaton<S, BuchiAcceptance> nba) {
int nbaSize = nba.size();
int pairCount = nbaSize * 2;
RabinAcceptance acceptance = RabinAcceptance.of(pairCount);
Tree<Label<S>> initialState = Tree.of(Label.of(Set.copyOf(nba.initialStates()), 0));

BiFunction<Tree<Label<S>>, BitSet, Edge<Tree<Label<S>>>> successor = (tree, valuation) -> {
BitSet usedIndices = new BitSet(nbaSize);
tree.forEach(node -> usedIndices.set(node.index()));
BitSet edgeAcceptance = new BitSet(nbaSize);

Tree<Label<S>> successorTree = tree.map((father, children) -> { // Successor
Set<Edge<S>> fatherEdges = father.states().stream().flatMap(state ->

nba.edges(state, valuation).stream()).collect(Collectors.toSet());

if (fatherEdges.isEmpty()) return Tree.of(father.with(Set.of()));

Label<S> newFather = father.with(Edges.successors(fatherEdges));
Set<S> newChildStates = fatherEdges.stream().filter(edge -> edge.inSet(0))

.map(Edge::successor).collect(Collectors.toUnmodifiableSet());

int index = usedIndices.nextClearBit(0);
usedIndices.set(index);
return Tree.of(newFather, Collections3.concat(children,

List.of(Tree.of(Label.of(newChildStates, index)))));
}).map((father, children) -> { // Horizontal merge

Set<S> olderStates = new HashSet<>();
List<Tree<Label<S>>> prunedChildren = new ArrayList<>();

for (Tree<Label<S>> child : children) {
Label<S> prunedLabel = child.label().without(olderStates);

if (prunedLabel.states().isEmpty()) {
edgeAcceptance.set(acceptance.pairs().get(prunedLabel.index()).finSet());
usedIndices.clear(prunedLabel.index());

} else {
// Recursive pruning of the child
prunedChildren.add(child.map((subNode, subChildren) ->

Tree.of(subNode.without(olderStates), subChildren)));
olderStates.addAll(prunedLabel.states());

}
}
return Tree.of(father, prunedChildren);

}).map((father, children) -> {
List<Tree<Label<S>>> nonEmptyChildren = children.stream().filter(

child -> !child.label().states().isEmpty()).collect(Collectors.toList());
if (nonEmptyChildren.isEmpty()) return Tree.of(father);

Set<S> childStates = nonEmptyChildren.stream().map(Tree::label).map(Label::states)
.flatMap(Set::stream).collect(Collectors.toUnmodifiableSet());

10

// Vertical merge
if (childStates.equals(father.states())) {

edgeAcceptance.set(acceptance.pairs().get(father.index()).infSet());
children.forEach(child -> child.forEach(node -> usedIndices.clear(node.index())));
return Tree.of(father);

}
return Tree.of(father, nonEmptyChildren);

});

usedIndices.flip(0, nbaSize);
BitSets.forEach(usedIndices, index ->

edgeAcceptance.set(acceptance.pairs().get(index).finSet()));
return Edge.of(successorTree, edgeAcceptance);

};

// Create on-the-fly automaton from initial state and successor function
return AutomatonFactory.create(initialState, nba.factory(), successor, acceptance);

}

B.2 Data Structure Classes

In the above code, we used the following two data structure classes. The imple-
mentations are generated by the Immutables framework.

@Tuple @Value.Immutable
public abstract static class Label<S> {

abstract Set<S> states();
abstract int index();

static <S> Label<S> of(Collection<S> states, int index) {
return LabelTuple.create(states, index);

}

Label<S> without(Set<S> states) { return of(Sets.difference(states(), states), index()); }
Label<S> with(Collection<S> states) { return of(states, index()); }

}

@HashedTuple @Value.Immutable
public abstract class Tree<L> {

abstract L label();
abstract List<Tree<L>> children();

static <L> Tree<L> of(L label) { return TreeTuple.create(label, List.of()); }
static <L> Tree<L> of(L label, List<Tree<L>> children) {

return TreeTuple.create(label, children);
}

public Tree<L> with(L label) { return of(label, children()); }

public Tree<L> map(BiFunction<L, List<Tree<L>>, Tree<L>> function) {
return function.apply(label(), Lists.transform(children(), child -> child.map(function)));

}
public Tree<L> map(Function<L, L> function) {

return of(function.apply(label()), Lists.transform(children(),
child -> child.map(function)));

}

public void forEach(Consumer<L> action) {
children().forEach(child -> child.forEach(action));
action.accept(this.label());

}
public void forEach(BiConsumer<L, List<L>> action) {

action.accept(label(), Lists.transform(children(), Tree::label));
children().forEach(child -> child.forEach(action));

}
}

11

B.3 Integration

To integrate the new construction with our pipeline, we only needed to register
the following field.

public static final TransformerParser CLI = ImmutableTransformerParser.builder()
.key("safra")
.description("Translates NBA to DRA using Safra’s construction")
.parser(settings -> environment -> (input, context) ->

SafraBuilder.build(AutomatonUtil.cast(input, BuchiAcceptance.class)))
.build();

Adding this construction to the testing framework then only required the
following two changes: First, we declare our new construction in tools.json by

"ltl-safra": {
"type": "owl",
"input": "ltl",
"output": "hoa",
"name": "safra",
"pre": [

"simplify-ltl",
["ltl2aut-ext", "-t", "ltl2tgba -B"]

],
"post": ["minimize-aut"]

}

Now, ltl-safra refers to a pipeline which reads and simplifies LTL formulae,
passes them to Spot’s ltl2tgba, producing a Büchi automaton, and then applies
the above construction to it. Then, we declare a test case in tests.json by

"safra": {
"tools": "ltl-safra",
"data": "small"

}

This test now takes our above declared pipeline ltl-safra and runs it on the
small data set. It can be manually executed by running python scripts/util.py
test safra, or integrated in the CI pipeline by adding

Safra:
stage: test
variables:

TEST_NAME: "safra"
<<: *ltlcross_template

to .gitlab-ci.yml, i.e. GitLab’s CI specifications.

12

C Detailed Code Metrics

In this section, we present two code metrics, showing the reusability and versatility
of Owl. In particular, these metrics indicate the total lines of code that could be
saved by re-using Owl for a new algorithm.

C.1 Raw Size

Table 1. Total lines of code (LoC) (including imports, comments, etc.) in Owl (left) and
some translations together with their relative size compared to Owl (right).

Package LoC

automaton 8321
ltl 6922
factories 1425
run 2570
JBDD 4913
Other utility 2246

Total 27251

Tool LoC Percentage

Delag 1357 5%
Rabinizer 7965 29%

dra2dpa 672 2%
ldba2dpa 434 2%
ltl2ldba 3646 17%
ltl2dpa 406 1%
ltl2dgra 2595 10%

Seminator reimpl. 390 1%

Table 1 presents the total lines of code (including import statements, comments,
etc.) currently in Owl together with the respective share of each major package,
namely ltl (LTL syntax, simplifications, etc.), automaton (Automaton represen-
tation, acceptance, etc.), factories (symbolic data structure abstraction), and
run (CLI and I/O infrastructure). Further, the table also includes the total size
of some translations mentioned in the main body together with their relative
size compared to Owl. We did not include MoChiBa (model checking based on
ltl2ldba, integrated in PRISM) and Strix (LTL synthesis tool, implemented in
C++), since their architecture complicates a comprehensive comparison.

Many constructions only need a few hundred lines of code for their imple-
mentation, demonstrating the significant aid provided by Owl. See the following
section for another measurement of code re-use by the translations.

C.2 Coverage Data

One might argue that most of the implemented functionality may be superfluous
and actually is not needed for the constructions. To this end, Table 2 shows the
code coverage of Owl achieved by a typical run of each construction in its default
configuration. Coverage refers to the relative amount of actually executable lines
being “covered”, i.e. executed, by a particular invocation. This excludes comments,
documentation, imports, etc. from consideration. We used the IntelliJ coverage
tool to determine these values.

We highlight that coverage is an under-approximation of actually re-used
code, since some code paths may only occur in a particular scenario or with
different options. Nevertheless, even in their default configuration most tools reuse

13

Table 2. Coverage data of several constructions on a typical run, measured with IntelliJ’s
coverage tool. Each column denotes the percentages of Owl’s classes, methods, and lines
of code covered by the execution.

Tool Class Method Line

Delag 37% 26% 23%
Rabinizer

dra2dpa 26% 14% 14%
ltl2dgra 49% 34% 33%
ltl2dpa 51% 34% 31%
ltl2ldba 48% 31% 29%
ltl2dra 53% 37% 36%

Seminator reimpl. 27% 14% 15%

a significant percentage of Owl while only using a few hundred lines themselves.
Note that the automaton-to-automaton translations dra2dpa and the Seminator
reimplementation don’t make use of the ltl package, thus having significantly
less re-use. Unfortunately, due to restrictions of the coverage tool, JBDD had to
be excluded.

14

