
Strix: Explicit Reactive Synthesis Strikes Back! ?

Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger

Technical University of Munich, Germany
{meyerphi,sickert,luttenbe}@in.tum.de

Abstract. Strix is a new tool for reactive LTL synthesis combining a
direct translation of LTL formulas into deterministic parity automata
(DPA) and an efficient, multi-threaded explicit state solver for parity
games. In brief, Strix (1) decomposes the given formula into simpler
formulas, (2) translates these on-the-fly into DPAs based on the queries
of the parity game solver, (3) composes the DPAs into a parity game, and
at the same time already solves the intermediate games using strategy
iteration, and (4) finally translates the winning strategy, if it exists, into
a Mealy machine or an AIGER circuit with optional minimization using
external tools. We experimentally demonstrate the applicability of our
approach by a comparison with Party, BoSy, and ltlsynt using the
syntcomp2017 benchmarks. In these experiments, our prototype can
compete with BoSy and ltlsynt with only Party performing slightly
better. In particular, our prototype successfully synthesizes the full and
unmodified LTL specification of the AMBA protocol for n = 2 masters.

1 Introduction

Reactive synthesis refers to the problem of finding for a formal specification of
an input-output relation, in our case a linear temporal logic (LTL), a matching
implementation [22], e.g. a Mealy machine or an and-inverter-graph (AIG).
Since the automata-theoretic approach to synthesis involves the construction
of a potentially double exponentially sized automaton (in the length of the
specification) [13], most existing tools focus on symbolic and bounded methods
in order to combat the state-space explosion [11,5,18,9]. A beneficial side effect
of these approaches is that they tend to yield succinct implementations.

In contrast to these approaches, we present a prototype implementation of an
LTL synthesis tool which follows the automata theoretic approach using parity
games as an intermediate step. Strix1 uses the LTL-to-DPA translation presented
in [23,10] and the multi-threaded explicit-state parity game solver presented in
[20,14]: First, the given formula is decomposed into much simpler requirements,
often resulting in a large number of safety and co-safety conditions and only
a few requiring Büchi or parity acceptance conditions, which is comparable to
? This work was partially funded and supported by the German Research Foundation
(DFG) projects “Game-based Synthesis for Industrial Automation” (253384115) and
“Verified Model Checkers” (317422601).

1 https://strix.model.in.tum.de/

https://strix.model.in.tum.de/


the approach of [21,5]. These requirements are then translated on-the-fly into
automata, keeping the invariant that the parity game solver can easily compose
the actual parity game. Further, by querying only for states that are actually
required for deciding the winner, the implementation avoids unnecessary work.

The parity game solver is based on the strategy iteration of [19] which it-
eratively improves non-deterministic strategies, i.e. strategies that can allow
several actions for a given state as long as they all are guaranteed to lead to the
specified system behaviour. When translating the winning strategy into a Mealy
automaton or an AIG this non-determinism can be used similarly to “don’t cares”
when minimizing boolean circuits. Strategy iteration offers us two additional
advantages, first, we can directly take advantage of multi-core systems; second, we
can reuse the winning strategies which have been computed for the intermediate
arenas.

Related Work and Experimental Evaluation. From the tools submitted to synt-
comp2017, ltlsynt [15] is closest to our approach: it also combines an LTL-
to-DPA-translation with an explicit-state parity game solver, but it does not
intertwine the two steps, instead it uses a different approach for the translation
leading to one monolithic DPA which is then turned in a parity game. In contrast,
the two best performing tools from syntcomp2017, BoSy and Party, use
bounded synthesis, by reduction either to SAT, SMT, or safety games.

In order to give a realistic estimation of how our tool would have faired
at syntcomp2017 (TLSF/LTL track), we tried to re-create the benchmark
environment of syntcomp2017 as close as possible on our hardware: in its
current state, our tool would have been ranked below Party, but before ltlsynt
and BoSy. Due to time and resource constraints, we could only do an in-depth
comparison with the current version of ltlsynt; in particular we used the TLSF
specification of the complete2 AMBA protocol for n = 2 as a benchmark. We
refer to Section 3 for details on the benchmarking procedure.

2 Design and Implementation

Strix is implemented in Java and C++. It supports LTL and TLSF [16] (only the
reduced basic variant) as input languages, while the latter one is preferred, since
it contains more information about the specification. We describe the main steps
of the tool in the following paragraphs with examples given in Figure 1.

Splitting and Translation. As a preprocessing step the specification is split into
syntactic (co)safety and (co)Büchi formulas, and one remaining general LTL
formula. These are then translated into the simplest deterministic automaton
class using the constructions of [23,10]. To speed up the process these automata
are constructed on-the-fly, i.e., states are created only if requested by later
stages. Furthermore, since DPAs can be easily complemented, the implementation
translates the formula and its negation and chooses the faster obtained one.
2 i.e. no decomposition in masters and clients or structural properties were used

2



ϕ = G(¬g0 ∨ ¬g1)︸ ︷︷ ︸
ψ1

∧G(r0 → Fg0)︸ ︷︷ ︸
ψ2

∧G(r1 → Fg1)︸ ︷︷ ︸
ψ3

I = {r0, r1} O = {g0, g1}

∧

a0 ⊥g0 + g1
g0g1Aψ1

b0 b1r0

r0

g0

g0

Aψ2

c0 c1r1

r1

g1

g1

Aψ3

Splitted specification with one
safety and two Büchi automata.

a0, b0, c0

a0, b1, c0 a0, b0, c1

· · ·

r0r1 g0 + g1

r0r1

g0g1

g0
r0r1

g0g1

g1r0r1
g0g1 g0g1r1

g0g1

g0 r1
g0g1

g0g1

r0

g0g1

g1r0

g0g1

g0g1

Partial min-even parity arena. Red thick edges
have parity 0 and thin black edges parity 1.

Fig. 1: Synthesis of a simple arbiter with two clients. Here, a winning strategy is
already obtained on the partial arena: always take any of the non-dashed edges.

Arena Construction. Here we construct one product automaton and combine the
various acceptance conditions into a single parity acceptance condition: for this,
we use the idea underlying the last-appearance-record construction, known from
the translation of Muller to parity games, to directly obtain a parity game again.

Parity Game Solving. The parity game solver runs in parallel to the arena
construction on the partially constructed game in order to guide the translation
process, with the possibility for early termination when a winning strategy for the
system player is found. It uses strategy iteration that supports non-deterministic
strategies [19] from which we can benefit in several ways: First, in the translation
process, the current strategy stays valid when adding nodes to the arena and
thus can be used as initial strategy when solving the extended arena. Second, the
non-deterministic strategies allow us to later heuristically select actions of the
strategy that minimize the generated controller and to identify irrelevant output
signals (similar to “don’t care”-cells in Karnaugh maps). Finally, the strategy
iteration can easily take advantage of multi-core architectures [14,20].

Controller Generation and Minimization. From the non-deterministic strategy
we obtain an incompletely specified Mealy machine and optionally pass it to
the external SAT-based minimizer MeMin [1] for Mealy machines and extract a
more compact description.

AIGER Circuit Generation and Minimization. We translate the minimized Mealy
machine with the tool Speculoos3 into an AIGER circuit. In parallel, we also
construct an AIGER circuit out of the non-minimized Mealy machine, since this
can sometimes result in smaller circuits. The two AIGER circuits are then further
compressed using ABC [6], and the smaller one is returned.
3 https://github.com/romainbrenguier/Speculoos

3

https://github.com/romainbrenguier/Speculoos


3 Experimental Evaluation

We evaluate Strix on the TLFS/LTL-track benchmark of the syntcomp2017
competition, which consists of 177 realizable and 67 unrealizable temporal logic
synthesis specifications [15]. The experiment was run on a server with an Intel
E5-2630 v4 clocked at 2.2GHz (boost disabled). To mimic syntcomp2017 we
imposed a limit of 8 threads for parallelization, a memory limit of 32GB and
a timeout of one hour for each specification. Every specification for that a
tool correctly decides realizability within these limits is counted as solved for
the category Realizability, and every specification for that it can additionally
produce an AIGER circuit that is successfully verified is counted as solved for
the category Synthesis. For this we verified the circuits with an additional time
limit of one hour using the nuXmv model checker [7] with the check_ltlspec
and check_ltlspec_klive routines in parallel.

We compared Strix with ltlsynt in the latest available release (version 2.5)
at time of writing. This version differs from the one used during syntcomp2017
as it contains several improvements, but also performs worse in a few cases and
exhibits erroneous behaviour: for Realizability, it produced one wrong answer,
and for Synthesis, it failed in 72 cases to produce AIGER circuits due to a
program error.

Additionally, we compare our results with the best configuration of the top
tools competing in syntcomp2017: Party (portfolio), ltlsynt and BoSy
(spot). Due to the difficulty of recreating the syntcomp2017 hardware setup4,
we compiled the results for these tools in Table 1 from the syntcomp2017
webpage5 combining them with our results.

The Quality rating compares the size of the solutions according to the
syntcomp2017 formula, where a tool gets 2 − log10

n+1
r+1 quality points for each

verified solution of size n for a specification with reference size r. We now move
on to a detailed discussion of the results and their interpretation.

Realizability. We were able to correctly decide realizability for 163 and unre-
alizability for 51 specifications, resulting in 214 solved instances. We solve five
instances that were previously unsolved in syntcomp2017.

4 syntcomp2017 was run on an Intel E3-1271 v3 (4 cores/8 threads) at 3.6GHz
with 32GB of RAM available for the tools. As stated above, we imposed the same
constraints regarding timeout, maximal number of threads, and memory limit; but
the Intel E3-1271 v3 runs at 3.6GHz (with boost 4.0GHz), while the Intel E5-2630
v4 used by us runs at only 2.2GHz (boost disabled) resulting in a lower per-thread-
performance (potentially 30% slower); on the other hand our system has a larger
cache and a theoretically much higher memory bandwidth from up to 68.3GB/s
compared to 25.6GB/s (for random reads, as in the case of dynamically generated
parity games, these numbers are much closer). It seems therefore likely that for some
benchmark-tool combinations our system is faster while for others it is slower.

5 http://syntcomp.cs.uni-saarland.de/syntcomp2017/experiments/

4

http://syntcomp.cs.uni-saarland.de/syntcomp2017/experiments/


Our system syntcomp2017

Strix ltlsynt (2.5) Party ltlsynt BoSy
So

lv
ed

Realizability 214 204 224 195 181
Synthesis 197 123 203 182 181
Quality 330 136 308 180 298
Avg. Quality 1.68 1.10 1.52 0.99 1.64

T
im

e
(s
)

R
ea
liz

ab
ili
ty full_arbiter_7 11.34 mem 8.77 mem time

prioritized_arbiter_7 58.53 time 372.95 time time
round_robin_arbiter_6 8.45 158.33 time 733.92 time
ltl2dba_E_10 6.79 324.84 time time time
ltl2dba_Q_8 2.13 346.12 time time time

Si
ze

(A
IG

) amba_..._encode_12 89 err 1040 3251 369
full_arbiter_5 531 err 2257 7393 time
full_arbiter_6 626 err 7603 26678 time
ltl2dba_E_4 7 406 243 406 time
ltl2dba_E_6 11 3952 1955 3952 time

Table 1: Results for Strix compared with ltlsynt and selected results from
syntcomp2017 on the TLSF/LTL-track benchmark and on noteable instances.
We mark timeouts by time, memouts by mem, and errors by err.

Synthesis. We produced AIGER circuits for 148 of the realizable specifications.
In 15 cases, we only constructed a Mealy machine, but the subsequent steps
(MeMin for minimization or Speculoos for circuit generation) reached the time
or memory limit. We were able to verify correctness for 146 of the circuits, reaching
the model checking time limit in two case. Together with the 51 specifications
for which we determined unrealizability, this results in 197 solved instances.

Quality. We produced 36 solutions that are smaller than any solution during
syntcomp2017. The most significant reductions are for the AMBA encoder
and the full arbiter, with reductions of over 75%, and for ltl2dba_E_4 and
ltl2dba_E_6, where we produce indeed the smallest implementation there is.

3.1 Effects of minimization

We could reduce the size of the Mealy machine in 80 cases, and on average by 45%.
However the data showed that this did not always reduce the size of the generated
AIGER circuit: in 13 cases (most notably for several arbiter specifications) the
size of the circuit generated from the Mealy machine actually increased when
applying minimization (on average by 190%), while it decreased in 62 cases (on
average by 55%).

We conjecture that the structure of the product-arena is sometimes amenable
to compact representation in an AIGER circuit, while after the (SAT-based)

5



minimization this is lost. In these cases the SAT/SMT-based bounded synthesis
tools such as BoSy and Party also have difficulties producing a small solution,
if any at all.

3.2 Synthesis of complete AMBA AHB arbiter

To test maturity and scalability of our tool, we synthesized the AMBA AHB
arbiter [2], a common case study for reactive synthesis. We used the parameter-
ized specification from [17] for n = 2 masters, which was also part of SYNT-
COMP2016, but was left unsolved by any tool. With a memory limit of 128GB,
we could decide realizability within 26 minutes and produce a Mealy machine
with 83 states after minimization. While specialised GR(1) solvers [2,4,12] or
decompositional approaches [3] are able to synthesize the specification in a mat-
ter of minutes, to the best of our knowledge we are the first full LTL synthesis
tool that can handle the complete non-decomposed specification in a reasonable
amount of time. For comparison, ltlsynt (2.5) needs more than 2.5 days on our
system and produces a Mealy machine with 340 states.

3.3 Discussion

The ltlsynt tool is part of Spot [8], which uses a Safra-style determinization
procedure for NBAs. Conceptually, it also uses DPAs and a parity game solver as
a decision procedure. However, as shown in [10] the produced automata tend to
be larger compared to our translation, which probably results in the lower quality
score. Our approach has similar performance and scales better on certain cases.
The instances where ltlsynt performs better than Strix are specifications that
we cannot split efficiently and the DPA construction becomes the bottleneck.

Bounded synthesis approaches (BoSy, Party) tend to produce smaller Mealy
machines and to be able to handle larger alphabets. However, they fail when the
minimal machine implementing the desired property is large, even if there is a
compact implementation as a circuit. In our approach, we can often solve these
cases and still regain compactness of the implementation through minimization
afterwards. The strength of the Party portfolio is the combination of traditional
bounded synthesis and a novel approach by reduction to safety games, which
results in a large number of solved instances, but reduces the avg. quality score.

Future Work Strix combines Java (LTL simplification and automata trans-
lations) and C++ (parity game construction and solving). We believe that a
pure C++ implementation will further improve the overall runtime and reduce
the memory footprint. Next, there are several algorithmic questions we want
to investigate going forward, especially expanding parallelization of the tool.
Furthermore, we want to reduce the dependency on external tools for circuit
generation in order to be able to fine-tune this step better. Especially replacing
Speculoos is important, since it turned out that it was unable to handle complex
transition systems.

6



References
1. Abel, A., Reineke, J.: Memin: Sat-based exact minimization of incompletely specified

mealy machines. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2015, Austin, TX, USA, November 2-6, 2015. pp.
94–101 (2015). https://doi.org/10.1109/ICCAD.2015.7372555

2. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. Electr. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

3. Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case study: AMBA
AHB. In: Proceedings 3rd Workshop on Synthesis, SYNT 2014, Vienna, Austria,
July 23-24, 2014. pp. 68–83 (2014). https://doi.org/10.4204/EPTCS.157.9

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthe-
sis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).
https://doi.org/10.1016/j.jcss.2011.08.007

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL syn-
thesis. In: Computer Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. pp. 652–657 (2012).
https://doi.org/10.1007/978-3-642-31424-7_45

6. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verifi-
cation tool. In: Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. pp. 24–40 (2010).
https://doi.org/10.1007/978-3-642-14295-6_5

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,
S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Computer
Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings.
pp. 334–342 (2014). https://doi.org/10.1007/978-3-319-08867-9_22

8. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and \omega -automata manipulation. In: Auto-
mated Technology for Verification and Analysis - 14th International Symposium,
ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings. pp. 122–129 (2016).
https://doi.org/10.1007/978-3-319-46520-3_8

9. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Tools and Algorithms for the
Construction and Analysis of Systems - 17th International Conference, TACAS 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. pp.
272–275 (2011). https://doi.org/10.1007/978-3-642-19835-9_25

10. Esparza, J., Kretínský, J., Raskin, J., Sickert, S.: From LTL and limit-deterministic
büchi automata to deterministic parity automata. In: Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I.
pp. 426–442 (2017). https://doi.org/10.1007/978-3-662-54577-5_25

11. Faymonville, P., Finkbeiner, B., Tentrup, L.: Bosy: An experimentation framework
for bounded synthesis. In: Computer Aided Verification - 29th International Con-
ference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II.
pp. 325–332 (2017). https://doi.org/10.1007/978-3-319-63390-9_17

12. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB
from formal specification: a case study. STTT 15(5-6), 585–601 (2013).
https://doi.org/10.1007/s10009-011-0207-9

7

https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10009-011-0207-9


13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], Lecture
Notes in Computer Science, vol. 2500. Springer (2002). https://doi.org/10.1007/3-
540-36387-4

14. Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Automated
Technology for Verification and Analysis - 11th International Symposium, ATVA
2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings. pp. 455–459 (2013).
https://doi.org/10.1007/978-3-319-02444-8_34

15. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,
Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez, G.A., Raskin, J.,
Sankur, O., Tentrup, L.: The 4th reactive synthesis competition (SYNTCOMP
2017): Benchmarks, participants & results. arXiv:1711.11439 [cs.LO] (2017), http:
//arxiv.org/abs/1711.11439

16. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto, Canada,
July 17-18, 2016. pp. 112–132 (2016). https://doi.org/10.4204/EPTCS.229.10

17. Jobstmann, B.: Applications and Optimizations for LTL Synthesis. Ph.D. thesis,
Graz University of Technology (2007)

18. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. pp. 928–933 (2013).
https://doi.org/10.1007/978-3-642-39799-8_66

19. Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving
parity games. arXiv:0806.2923 [cs.GT] (2008), http://arxiv.org/abs/0806.2923

20. Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU. In: Auto-
mated Technology for Verification and Analysis - 14th International Symposium,
ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings. pp. 262–267 (2016).
https://doi.org/10.1007/978-3-319-46520-3_17

21. Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and
the non-confluence property for efficient LTL synthesis. In: Proceedings First
Symposium on Games, Automata, Logic, and Formal Verification, GANDALF
2010, Minori (Amalfi Coast), Italy, 17-18th June 2010. pp. 89–102 (2010).
https://doi.org/10.4204/EPTCS.25.11

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 179–190. POPL ’89, ACM, New York, NY, USA (1989).
https://doi.org/10.1145/75277.75293

23. Sickert, S., Esparza, J., Jaax, S., Kretínský, J.: Limit-deterministic büchi automata
for linear temporal logic. In: Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
II. pp. 312–332 (2016). https://doi.org/10.1007/978-3-319-41540-6_17

8

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-02444-8_34
http://arxiv.org/abs/1711.11439
http://arxiv.org/abs/1711.11439
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1007/978-3-642-39799-8_66
http://arxiv.org/abs/0806.2923
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.4204/EPTCS.25.11
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-319-41540-6_17

	Strix: Explicit Reactive Synthesis Strikes Back! 

