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Abstract. The limiting factor for quantitative analysis of Markov deci-
sion processes (MDP) against specifications given in linear temporal logic
(LTL) is the size of the generated product. As recently shown, a special
subclass of limit-deterministic Büchi automata (LDBA) can replace de-
terministic Rabin automata in quantitative probabilistic model checking
algorithms. We present an extension of PRISM for LTL model checking
of MDP using LDBA. While existing algorithms can be used only with
minimal changes, the new approach takes advantage of the special struc-
ture and the smaller size of the obtained LDBA to speed up the model
checking. We demonstrate the speed up experimentally by a comparison
with other approaches.

1 Introduction

Linear temporal logic (LTL) [30] is a prominent specification language and has
been proven useful in industrial practice. The key to efficient LTL model checking
is the automata-theoretic approach [38]: first, a given LTL formula is translated
into an automaton; second, a product of the system and the automaton is con-
structed and analysed. Since real systems are huge, it is crucial to construct
small automata in order to avoid a large size increase of the product.

LTL is typically translated into non-deterministic Büchi automata (NBA)
[8, 10, 14, 36, 17, 18, 15, 2, 11]. However, for probabilistic models such as Markov
decision processes (MDP) non-deterministic automata are not applicable [3] and
the standard solution is to determinise them using Safra’s construction [32, 29,
33, 22, 37]. This approach is implemented in the most widespread probabilistic
model checker PRISM [27]. However, the determinisation step is costly and of-
ten increases the size of automata dramatically. Therefore, direct translations of
LTL to deterministic automata have been proposed [26, 25, 1, 13], implemented
[16, 5, 24], and shown to be more efficient for probabilistic model checking [6].
Nevertheless, despite more sophisticated acceptance conditions, such as gener-
alized Rabin [26], the imposed determinism inevitably increases the size of the
automata.

This naturally raises the question whether fully deterministic automata are
necessary or whether restricted forms of determinism are sufficient. For instance,
in the setting of games where NBA are not applicable either, a weaker notion
of determinism called good-for-games automata is sufficient [20]. It has been
proven sufficient also for probabilistic model checking, but practically “did not
improve on the standard approach” [23]. Further, unambiguous automata can be



used [9] for model checking Markov chains, but not for MDPs. Moreover, limit-
deterministic Büchi automata (LDBA) [38, 7] can be used for probabilistic model
checking MDPs in the qualitative case (deciding whether a property holds with
probability 1). This idea has been further explored also in the quantitative setting
(computing the probability of satisfaction) and an algorithm constructing prod-
ucts with several (limit-)deterministic automata proposed [19]. Although LDBA
cannot in general be used for probabilistic model checking, a recent translation
[35] of LTL produces LDBA, which can be used in the standard algorithm based
on the construction of a single product. It also discusses the subclass of LDBA
that can be used for this task. Note that there is also an exponentially better
translation [21] (based on [25]) of a fragment of LTL called LTL\GU into LDBA
and that there is also an efficient complementation procedure for LDBA [4].

In this paper, we provide the first implementation of the probabilistic model
checking procedure proposed in [35] based on LDBA. Apart from smaller sizes of
LDBA, another advantage of the Büchi acceptance condition is a faster analysis
of maximal end components (MECs), compared to the standard repetitive re-
computation for each Rabin pair. We also present several crucial optimizations,
which make our implementation outperform other approaches on many formulas.
We illustrate this on experimental results. The tool as well as the explanation
of its name can be found on https://www7.in.tum.de/~sickert/projects/
mochiba/.

2 Overview of the Algorithm

In order to present our implementation and optimizations, we have to sketch
how an MDPM is checked against an LTL formula ϕ by the algorithm of [35].
First, ϕ is translated into an LDBA A(ϕ). Second,M is checked against A(ϕ)
using a straightforward extension of the standard algorithm.

LDBA Construction. An LDBA is a (possibly generalised) Büchi automaton
partitioned into an initial and an accepting part, where the initial part contains
no accepting transitions and the accepting part is deterministic. Moreover, the
construction of [35] produces LDBA with the initial part deterministic except
for ε-transitions into the accepting part.

q0 : a ∧X(FGa ∨ FGb)

q1 : FGa ∨ FGb

pGa : Ga

pGb : Gb
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Fig. 1. LDBA A(ϕ) with the initial part on
the left and the accepting on the right.

We illustrate the translation on
ϕ = a∧X(FGa∨FGb). Each state
in the initial part is labeled with a
formula. The words accepted from
a state are exactly those satisfying
the formula. Observe that FGa ∨
FGb holds iff eventually we reach a
point where Ga holds or Gb holds.
We non-deterministically guess this
point and take the ε-transition to
the accepting part, where we check
the guess.
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For this formula spot (2.0) produces a deterministic Rabin automaton with
4 states, too, but adding two more disjuncts FGc and FGd increases the size to
26 states. In contrast, our LDBA requires only two extra states.

Product Construction and Analysis. We proceed
according to the standard algorithm:

1. Construct the product P =M×A(ϕ).
2. Compute maximal end-components (MECs) of P.
3. Compute the maximum probability to reach win-

ning MECs. A MEC is winning if it satisfies the
acceptance condition of A(ϕ): here, if it contains
an accepting transition for each Büchi condition.

A : Label(A) = {a}

B : Label(B) = {b}

α
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Fig. 2. An MDPM.
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Fig. 3. The productM×A(ϕ).

The standard product of an MDP and
a deterministic automaton defines the
transitions (in the usual notation) by
P (〈s, q〉, α, 〈s′, q′〉) = P (s, α, s′) if q′ =
δ(q,Label(s′)) and otherwise equals 0. We
extend the procedure to handle also non-
deterministic ε-transitions by additional ac-
tions: let q1, . . . , qn be the successors of q
under ε, then for each i = 1, . . . , n we
add a new action called εqi and define
P (〈s, q〉, εqi , 〈s, qi〉) = 1 (note that s does not move here).

Fig. 3 illustrates the construction by a product of the system of Fig. 2 and
the automaton of Fig. 1. A crucial optimization used here is that it is sufficient
to take ε-transitions only from states in MECs ofM×N (ϕ) (which are exactly
MECs of the product ofM and the initial part of A(ϕ)). Hence no ε-transitions
have to be produced in the initial state here.

3 Implementation and Optimizations

MoChiBA [34] replaces the LTL model-checker and the MEC computation in
the explicit-state model-checker of PRISM, while other infrastructure (parsing,
model construction, probability computation) are inherited from PRISM. The
tool cannot be configured — all optimizations are enabled — and does not
need to be installed. It reads a model (given as an MDP, .nm) and a property
specification (.pctl) and prints the results to stdout:

./mochiba.sh model.nm properties.pctl

Apart from taking ε-transitions only from states in MECs ofM×N (ϕ) as
mentioned above, we implement the following optimizations:
Transition-based acceptance leads to smaller automata, compared to state-
based acceptance. Consequently, it is used by many translators, for instance [11,

3



1, 24]. However, PRISM translates all automata to state-based, thus increasing
the size of the product. Our procedure avoids this and constructs and analyses
directly the transition-based product.
Generalised Büchi acceptance condition allows for more efficient analysis
than (generalised) Rabin, Streett, or parity conditions. Indeed, for the latter
conditions expensive re-computations of MECs are necessary to handle different
sets to be visited finitely often. In contrast, we compute MECs only once and
check whether each set to be visited infinitely often intersects the MEC.
A single trap state is present in the product. Should the product enter any
state from which the automaton component can never accept, the exploration
of this part stops and redirects the transition to the single trap state.
Primitive data structures such as arrays are used instead of the more flexible
Java collections, since they are more memory efficient, as boxing into objects is
not necessary.
Sparse bit sets have proven more memory efficient for our approach than plain
bit sets with a mapping table.
MEC decomposition is performed locally on disconnected accepting parts
(corresponding to different ε-transitions). Together with the use of sparse bit
sets, MECs are computed faster and using less memory.

4 Experimental Evaluation
We evaluate our novel approach in the setting of [6, 19]: we consider the Pneuli-
Zuck randomised mutual exclusion protocol [31] of the PRISM benchmark suite
[28] and also the same previously considered formulas (see lines 1–10 of Table 1).
Additionally, lines 11–14 consider the deeply nested formulas of [35]. Finally,
complementary to the GF-, FG- and fairness-like properties, lines 15–16 include
simple reachability properties, which lie in the focus of the traditional methods.

The experiments were performed on a 2.5 GHz Intel Core i7 (I7-4870HQ)
and granted 12 GB RAM and 1 hour computing time for model checking each
property (given the model already in the memory). We denote time-outs and
mem-outs by “-”. We compare the following tools

– MoChiBA (1.0) [34] is our implementation based on the LDBA translation of
[35] and the explicit model checker of PRISM.

– PRISM (4.3) [27] with the symbolic engine, which is the fastest here, and with
the following translators:
• Built-in LTL to deterministic Rabin automaton translation, re-imple-

menting ltl2dstar [22].
• Rabinizer (3.1) [24] using the Safra-less direct translation into gener-

alised Rabin automata, which are now supported by PRISM.
– IscasMC (unofficial, unversioned) implements the lazy approach of [19], using

SPOT 1.2.6 [12] to translate LTL to non-deterministic Büchi automaton. We
used the two fastest configurations as listed in [19]:
• Multi-breakpoint (BP) construction with the explicit engine.
• Rabin (R) construction with the explicit engine.
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Table 1. Runtime comparison on model checking these properties on the Pneuli-Zuck
randomised mutual exclusion protocol [31].

time (rounded, in seconds)
property n MoChiBA PRISM Rabinizer IscasMC-BP IscasMC-R

(1) Pmax=?[
GFp1=10∧GFp2=10

∧GFp3=10 ]
4 < 1 16 < 1 < 1 < 1
5 2 230 < 1 12 11

(2) Pmax=?[
GFp1=10∧GFp2=10
∧GFp3=10∧GFp4=10]

4 < 1 26 < 1 1 < 1
5 2 345 < 1 12 12

(3) Pmin=?[
GFp1=10∧GFp2=10
∧GFp3=10∧GFp4=10]

4 1 3552 33 1 22
5 11 - 572 18 641

(4) Pmax=?[
(GFp1=0∨FGp2 6=0)
∧(GFp2=0∨FGp3 6=0)]

4 1 684 18 2 4
5 15 - 293 19 50

(5) Pmax=?[
(GFp1=0∨FGp1 6=0)
∧(GFp2=0∨FGp2 6=0)]

4 < 1 < 1 23 1 4
5 1 < 1 403 17 59

(6) Pmax=?[
(GFp1=0∨FGp2 6=0)
∧(GFp2=0∨FGp3 6=0)
∧(GFp3=0∨FGp1 6=0)

]
4 < 1 78 9 3 10
5 10 1293 137 29 143

(7) Pmax=?[
(GFp1=0∨FGp1 6=0)
∧(GFp2=0∨FGp2 6=0)
∧(GFp3=0∨FGp3 6=0)

]
4 < 1 < 1 61 2 18
5 1 < 1 1077 27 277

(8) Pmin=?[
(GFp1 6=10∨GFp1=0∨FGp1=1)

∧GFp1 6=0∧GFp1=1 ]
4 < 1 8 8 1 1
5 1 145 190 16 21

(9) Pmax=?[
(Gp1 6=10∨Gp2 6=10∨Gp3 6=10)

∧(FGp1 6=1∨GFp2=1∨GFp3=1)
∧(FGp2 6=1)∨GFp1=1∨GFp3=1)

]
4 5 - 1195 8 871
5 99 - - 125 -

(10) Pmin=?[
FGp1 6=0∨FGp2 6=0

∨GFp3=0∨(FGp1 6=10
∧GFp2=10∧GFp3=10)

]
4 1 728 33 79 6
5 24 - 486 - 77

(11) Pmin=?[f0,0] = Pmin=?[
(GFp1=10)U

(p2=10) ]
4 < 1 17 40 2 2
5 11 257 715 23 54

(12) Pmax=?[f0,4] = Pmax=?[
(GFp1=10)U

(XXXXp2=10)]
4 < 1 3 < 1 1 15
5 5 20 2 20 2381

(13) Pmin=?[f1,0] = Pmin=?[
(GFp1=10)U

(G((GFp2=10)U
(p3=10)))

]
4 < 1 909 22 314 4
5 13 - 436 - 59

(14) Pmax=?[f1,4] = Pmax=?[
(GFp1=10)U

(G((GFp2=10)U
(XXXXp3=10)))

]
4 < 1 - 18 2 2
5 12 - 285 24 25

(15) Pmax=?[p1 = 0 U p2 = 10]
4 < 1 < 1 < 1 < 1 < 1
5 < 1 < 1 < 1 7 7

(16) Pmax=?[XXXXXXp1 = 0]
4 < 1 < 1 < 1 1 < 1
5 3 < 1 < 1 19 16

5 Conclusion

We have implemented a novel approach for probabilistic LTL model checking
using a subclass of non-deterministic Büchi automata. Since the experimental
results for the explicit state-space implementation are encouraging, we plan to
extend the approach to a symbolic one. Further, a parellelisation of the prod-
uct construction and MECs analysis, as well as dedicated constructions for the
Release-operator or various LTL fragments could lead to further speed ups.
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